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Figure1l Animage analogy. Our problem is to compute a new “analogous” image B’ that relates to B in “the same way” as A’ relates to A. Here, A, A’, and B
are inputs to our algorithm, and B’ is the output. The full-size images are shown in Figures 10 and 11.

Abstract

This paper describes a new framework for processing images by
example, called “image analogies.” The framework involves two
stages: a design phase, in which a pair of images, with one im-
age purported to be a “filtered” version of the other, is presented
as “training data”; and an application phase, in which the learned
filter is applied to some new target image in order to create an “anal-
ogous” filtered result. Image analogies are based on a simple multi-
scale autoregression, inspired primarily by recent results in texture
synthesis. By choosing different types of source image pairs as in-
put, the framework supports a wide variety of “image filter” effects,
including traditional image filters, such as blurring or embossing;
improved texture synthesis, in which some textures are synthesized
with higher quality than by previous approaches; super-resolution,
in which a higher-resolution image is inferred from a low-resolution
source; texturetransfer, in which images are “texturized” with some
arbitrary source texture; artistic filters, in which various drawing
and painting styles are synthesized based on scanned real-world
examples; and texture-by-numbers, in which realistic scenes, com-
posed of a variety of textures, are created using a simple painting
interface.
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1 Introduction

a-nal-o0-gy n. A systematic comparison between structures
that uses properties of and relations between objects of
a source structure to infer properties of and relations be-
tween objects of a target structure. [14]

A native talent for perceiving analogiesis. .. the leading
fact in genius of every order.

—William James, 1890 [28]

Analogy is a basic reasoning process, one that we as humans em-
ploy quite commonly, and often unconsciously, to solve problems,
provide explanations, and make predictions [44]. In this paper, we
explore the use of analogy as a means for creating complex image
filters (Figure 1). In particular, we attempt to solve the following
problem:

Problem (“IMAGE ANALOGIES”): Given a pair of images
Aand A’ (the unfiltered and filtered source images, respec-
tively), along with some additional unfiltered target image
B, synthesize a new filtered target image B’ such that

A A B: B
In other words, we want to find an “analogous” image B’ that re-
lates to B in “the same way” as A’ relates to A. In general, this

is a very difficult problem to solve; in this paper, we describe an
approach that works well in many cases.

An advantage of image analogies is that they provide a very natural
means of specifying image transformations. Rather than selecting
from among myriad different filters and their settings, a user can
simply supply an appropriate exemplar (along with a correspond-
ing unfiltered source image) and say, in effect: “Make it look like
this.” Ideally, image analogies should make it possible to learn very
complex and non-linear image filters—for instance, filters that can
convert a photograph into various types of artistic renderings hav-
ing the appearance of oil, watercolor, or pen-and-ink, by analogy
with actual (real-life) renderings in these styles. In addition, these
various types of filters would not need to be invented individually or
programmed explicitly; ideally, the same general mechanism could
be used instead to provide this very broad variety of effects.

While image analogies are clearly a desirable goal, it is not so clear
how they might be achieved.



For one thing, a crucial aspect of the image analogies problem state-
ment is the definition of similarity used to measure not only the re-
lationship between each unfiltered image and its respective filtered
version, but also the relationship between the source pair and the
target pair when taken as a whole. This issue is tricky, in that we
want to use some metric that is able to preserve recognizable fea-
tures of the original image filter from A to A’, while at the same
time is broad enough to be applied to some completely different
target image B. Moreover, it is not obvious what features of a train-
ing pair constitute the “style” of the filter: in principle, an infinite
number of different transformations could be inferred from a pair
of images. In this paper, we use a similarity metric that is based on
an approximation to a Markov random field model, using raw pixel
values and, optionally, steerable filter responses [45]. To measure
relationships between the source and target image pair, we sample
joint statistics of small neighborhoods within the images, as discus-
sion in Section 3.

In addition, we would like the synthesis of the filtered target image
B’ to proceed at a reasonable rate. Thus, we will need a way to
index and efficiently search over the various images A, A’, and B,
using the similarity metric, to choose the appropriate parts of the
transform A — A’ in synthesizing B — B’. We use an autoregres-
sion algorithm, based primarily on recent work in texture synthesis
by Wei and Levoy [49] and Ashikhmin [2]. Indeed, our approach
can be thought of as a combination of these two approaches, along
with a generalization to the situation of corresponding pairs of im-
ages, rather than single textures.

Finally, in order to allow statistics from an image A to be applied
to an image B with completely different colors, we sometimes op-
erate in a preprocessed luminance space, as described in detail in
Sections 3.3 and 3.4.

In actual usage, we envision image analogies involving two stages.
In the design (or training) phase, a designer (possibly an expert)
creates a filter by selecting the training images A and A’ (for exam-
ple, from scanned imagery), annotating the images if desired, and
(directly or indirectly) selecting parameters that control how vari-
ous types of image features will be weighted in the image analogy.
The filter can then be stored away in a library. Later, in the appli-
cation phase, a user (possibly someone with no expertise at all in
creating image filters) applies the filter to some target image B.

Obviously, we cannot expect our image analogies framework to do
a perfect job in learning and simulating all possible image filters,
especially from just a single training pair. Moreover, many of the
filters that we would like our framework to be able to learn are, in
fact, extremely difficult even for humans to master. Nevertheless, we
have found our image analogies framework to work rather surpris-
ingly well in a variety of situations, as demonstrated in Section 4.
These include:

e traditional image filters, such as blurring or “embossing” (Sec-
tion 4.1);

e improved texture synthesis, in which some textures are synthe-
sized with higher quality than previous approaches (Section 4.2);

e super-resolution, in which a higher-resolution image is inferred
from a low-resolution source (Section 4.3);

e texturetransfer, in which images are “texturized” with some ar-
bitrary source texture (Section 4.4);

e artistic filters, in which various drawing and painting styles, in-
cluding oil, watercolor, and line art rendering, are synthesized
based on either digitally filtered or scanned real-world examples
(Section 4.5); and

o texture-by-numbers, in which realistic scenes, composed of a va-
riety of textures, are created using a simple “painting” interface
(Section 4.6).

In all of these cases, producing the various different effects is pri-
marily just a matter of supplying different types of source image
pairs as input. For example, a blur filter is “learned” by supplying
an image and its blur as the (A, A") pair. Similarly, an oil-painting
style is learned by supplying an image and its oil-painted equiva-
lent as the input pair. Ordinary texture synthesis can be viewed as
a special case of image analogies in which the unfiltered images A
and B are null (i.e., considered to match trivially everywhere), and
the analysis/synthesis is performed just on A” and B’. Alternatively,
texture-by-numbers is achieved by using a realistic image, such as
a landscape, as A" and supplying a simplified, hand-segmented ver-
sion of the landscape as A—for instance, where one solid color in A
corresponds to “sky texture” in A’, another to “grass texture,” and
so on. These same colors can then be painted onto B to generate a
new realistic landscape B’ with similar textures.

Finally, we also describe a real-time, interactive version of our al-
gorithm, which can be used to provide image analogies underneath
the footprint of a digital painting tool (Section 5). While texture-
by-numbers is a natural application for this tool, it can be used with
any type of image analogy.

While successful in many ways, image analogies do not work in
every case since they attempt to model only low-level statistics of
the image pairs. Thus, higher-level features such as broad, coher-
ent brush strokes are not always captured or transferred very ef-
fectively. Section 6 discusses the limitations of our approach and
suggests areas of future research.

2 Related work

Image analogies build upon a great deal of previous work in several
disparate areas, including machine learning, texture synthesis, non-
photorealistic rendering, and image-based rendering. As far as we
know, some of the applications supported by image analogies are
completely new, such as the ability to learn “artistic filters” from
digitized imagery of real artistic renderings. Others, such as super-
resolution and texture transfer, have previously been addressed by
other works, in some form or another. Although the algorithms we
describe compare favorably—and improve upon—much of this pre-
vious work, it is the generality and convenience of the image analo-
gies framework that we believe makes it so interesting and useful.
Here, we survey some of the most closely related work.

Generalizing from a set of known examples, as we attempt to do
in this paper, is a central problem in machine learning. Analog-
ical reasoning is central to problem solving, learning, and creativ-
ity [19, 31, 33]. For this reason, a goal from the early days of
artificial intelligence has been to build systems able to reason by
analogy; early works include Evan’s ANALOGY program [15] and
Winston’s seminal work on finding and exploiting parallels in sim-
ple theories [52]. In this paper, we propose a novel statistical ap-
proach for finding analogies between images, from the perspective
of modeling transformations that are not just shifts, scales, and ro-
tations but rather mappings of one sort of object or relation into
another.

Recently, a number of applications of machine learning to prob-
lems in computer graphics have been published, including Video
Rewrite [7], Voice Puppetry [5], Video Textures [43], and Style Ma-
chines [6]. Our paper continues in the two-word-title tradition of
these earlier works. In research that is perhaps most closely related
to our own, Freeman et al. [17] use Markov random fields (MRFs)
for scene learning, in which they attempt to learn the transforma-
tion from some captured image to the scene interpretation, such as
extracting high-resolution data from low-resolution data (“super-
resolution”) or inferring optical flow from image pairs. Our method
differs from previous MRF modeling techniques in that we do not
require an iterative algorithm in order to apply the model. More im-
portantly, our work introduces a variety of new applications of these
methods for computer graphics.



In the last few years, a great deal of work has been published in both
the computer graphics and computer vision communities on the
problem of texture synthesis: the creation of images that match the
texture appearance of a given digitized sample. Heeger and Bergen
[23] introduced this problem to the computer graphics community
in 1995. More recently, De Bonet [4] and Efros and Leung [11]
showed that a nearest-neighbor search can perform high-quality
texture synthesis in a single pass, using multiscale and single-scale
neighborhoods, respectively. (This search may be viewed as an ap-
proximation to sampling from an MRF, an approach used by Zhu
et al. [54] and Portilla and Simoncelli [40].) Wei and Levoy [49]
unify these approaches, using neighborhoods consisting of pixels
both at the same scale and at coarser scales. Vector quantization
[20] or other clustering may be used to summarize and accelerate
the nearest-neighbors computation [17, 34, 35, 39, 49].

In unpublished work, Eilhauer et al. [13] demonstrate a method for
synthesizing texture to match a given image, work that we extend
in this paper under the name “texture transfer.” In these same pro-
ceedings, Efros and Freeman [12] describe improved methods for
texture synthesis and show how these methods can also be used
for texture transfer. Our texture transfer method also bears some
resemblance to Veryovka and Buchanan’s methods for halftoning
one image with the texture of another [47] and for using multiple
textures to illustrate 3D meshes [46].

In recently published work, Ashikhmin [2] describes a texture syn-
thesis method that works by greedily extending existing patches
whenever possible, rather than by searching the entire example tex-
ture. The algorithm is very fast and produces results that often look
much better than the output from previous synthesis methods. How-
ever, the greedy search seems to have difficulty restarting effec-
tively when a patch being copied ends (e.g., runs off the end of the
image). In our tests, this problem produces abrupt discontinuities
between the texture patches. As mentioned earlier, our work builds
upon this algorithm, combining it with Wei and Levoy’s approach
and generalizing this combination to image analogies. Ashikhmin
also allows a user to draw a color image as a target for texture
synthesis, in a manner that has some resemblance to our “texture-
by-numbers” application. However, as discussed in detail in Sec-
tion 4.6, image analogies are able to address a number of drawbacks
in Ashikhmin’s approach by virtue of using a pair of images, rather
than a single image, to control the synthesis procedure.

One important application of image analogies that we explore in
this paper is the automatic synthesis of various artistic styles from
examples. In the past few years, there has been a great deal of work
in creating artistic styles by computer [10, 21, 24, 26, 32, 36, 41,
42, 50, 51], a field that has come to be known as non-photorealistic
rendering (NPR). One drawback of most of these previous works,
however, is that the methods have had to be specifically tailored to
a specific rendering style (or space of styles); image analogies, by
contrast, although they may not be able to create any single style as
well, can be used for a very broad range of effects.

In this paper, we aim to broaden the range of NPR techniques by
exploring what could be thought of as example-based rendering
(EBRY), in which scanned-in artistic imagery is reused for NPR syn-
thesis. The earliest examples of this sort of approach were tools
like the “clone brush” in Adobe Photoshop, or the “image hose”
in Corel (originally, Fractal Design) Painter. Recently, a number of
EBR approaches to NPR have been proposed in a variety of re-
search systems [8, 27, 30, 53]. Perhaps most similar in spirit to our
own approach (albeit in somewhat different domains) are a method
for creating pen strokes from examples [18] and a method for esti-
mating parameters of a 3D line-drawing illustration system from an
example rendering made within the same system [22].

3 Imageanalogies

Here, we describe a set of data structures and algorithms to support
image analogies.

3.1 Definitionsand data structures

As input, our algorithm takes a set of three images, the unfiltered
source image A, the filtered source image A’, and the unfiltered
target image B. It produces the filtered target image B’ as output.

Our approach assumes that the two source images are registered;
that is, the colors at and around any given pixel p in A correspond
to the colors at and around that same pixel p in A’, through the
image filter that we are trying to learn. Thus, we will use the same
index p to specify both a pixel in A and its corresponding pixel in
A’. We will use a different index ¢ to specify a pixel in the target
pair B and B’.

For the purposes of this exposition, we will assume that the various
images contain not just an RGB color, but additional channels of
information as well, such as luminance and various filter responses.
Together, all of these channels (including RGB) comprise the fea-
ture vector for each pixel p. We use A(p) (or A’(p)) to denote the
complete feature vector of A (or A’) at pixel p and, similarly, B(q)
(or B’(q)) to specify the feature vector at pixel g. Note that the
features used for the A and B images need not be the same as for
the A’ and B’ images. The particular features we use are described
in more detail in Section 3.3 below (however, experimenting with
alternate or additional features is certainly a rich area for future re-
search). As we shall see, these features will be used to guide the
matching process, in order to help select the most suitable pixels
from A’ to use in the synthesis of B’.

Finally, our algorithm will need to keep track of the position p of
the source pixel that was copied to pixel ¢ of the target. Thus, we
will store an additional data structure s(-) (for “source™), which is
indexed by g, and has the property s(q) = p.

In summary, our algorithm maintains the following data structures,
of which the RGB channels of A(p), A’(p), and B(q) are inputs,
the RGB channels of B’(q) is the output, and the other channels
of A, A’, B, and B’, as well as s(q), are intermediate computed
results in the synthesis process:

A(p): array p € SourcePoint of Feature
A'(p): array p € SourcePoint of Feature’
B(q): array q € TargetPoint of Feature
B'(q): array q € TargetPoint of Feature’
s(q): array q € TargetPoint of SourcePoint

where SourcePoint and TargetPoint are 2D pixel locations in the
source and target pairs, respectively.

We will actually use a multiscale representation of all five of these
quantities in our algorithm. Thus, we will typically index each of
these arrays by their multiscale level £ using subscripts. For exam-
ple, if A, represents the source image A at a given resolution, then
A,_1 represents a corresponding lower-resolution image at the next
coarser level, with half as many pixels in each dimension. We will
use L to denote the maximum level, i.e., the level for the highest-
resolution versions of the images.

3.2 Thealgorithm

Given this notation, the image analogies algorithm is easy to de-
scribe. First, in an initialization phase, multiscale (Gaussian pyra-
mid) representations of A, A’, and B is constructed, along with
their feature vectors and some additional indices used for speed-
ing the matching process (e.g., an approximate-nearest-neighbor
search (ANN), as described below). The synthesis then proceeds
from coarsest resolution to finest, computing a multiscale represen-
tation of B’, one level at a time. At each level ¢, statistics pertaining



to each pixel ¢ in the target pair are compared against statistics for
every pixel p in the source pair, and the “best” match is found. The
feature vector By (q) is then set to the feature vector Aj(p) for the
closest-matching pixel p, and the pixel that matched best is recorded

in se(q).

The algorithm can be described more precisely in pseudocode as
follows:

function CREATEIMAGEANALOGY (A, A’, B):
Compute Gaussian pyramids for A4, A’, and B
Compute features for A, A’, and B
Initialize the search structures (e.g., for ANN)
for each level ¢, from coarsest to finest, do:

for each pixel ¢ € By, in scan-line order, do:
p «— BESTMATCH(A, A', B, B', 5, £, q)
Bi(q) — Ai(p)
se(q) < p
return B},

The heart of the image analogies algorithm is the BESTMATCH
subroutine. This routine takes as input the three complete images
A, A" and B, along with the partially synthesized B’, the source
information s, the level £, and the pixel ¢ being synthesized in B’.
It finds the pixel p in the source pair that best matches the pixel
being synthesized, using two different approaches: an approximate
search, which attempts to efficiently find the closest-matching pixel
according to the feature vectors of p, ¢, and their neighborhoods;
and a coherence search, based on Ashikhmin’s approach [2], which
attempts to preserve coherence with the neighboring synthesized
pixels. In general, the latter approach will usually not return a pixel
that matches as closely with respect to the feature vectors; however,
since the Lo-norm is an imperfect measure of perceptual similarity,
coherent pixels will often look better than the best match under L.
We therefore rescale the approximate-search distance according to
a coherence parameter , in order to make it artificially larger when
comparing the two choices. Thus, the larger the value of «, the more
coherence is favored over accuracy in the synthesized image. In or-
der to keep the coherence term consistent at different scales, we at-
tenuate it by a factor of 2°~ L since pixel locations at coarser scales
are spaced further apart than at finer scales. (In a sense, 2° =%« rep-
resents an estimate of the scale of “textons” [29] at level ¢.) We
typically use 2 < k < 25 for color non-photorealistic filters, K = 1
for line art filters, and 0.5 < x < 5 for texture synthesis.

Here is a more precise statement of this algorithm:

function BESTMATCH(A, A’, B, B', s, ¢, q):
Dap < BESTAPPROXIMATEMATCH(A, A’, B, B, £, q)
Poon < BESTCOHERENCEMATCH(A, A’, B, B, s, ¢, q)
dagp || Fe(papp) — FE(Q)H2
dcoh — ||FZ(pcoh) - FZ(Q)HQ
if doon < dap(1 + 27 L) then
return Peoh
else
return pa,

Here, we use Fy(p) to denote the concatenation of all the feature
vectors within some neighborhood N (p) of both source images A
and A’ at both the current resolution level ¢ and at the coarser res-
olution level £ — 1. We have used 5 x 5 neighborhoods in the fine
level and 3 x 3 neighborhoods in the coarse level (Figure 2). Simi-
larly, we use F(q) to denote the same concatenation for the target
images B and B’, although in the case of the filtered target im-
age B’ the neighborhood at the finest resolution includes only the
portion of the image that has already been synthesized. (Note that
F(-) is overloaded in our notation; the index p or ¢ will be used
to determine whether a particular F'(-) is a source or target neigh-

borhood feature vector.) In each case, the norm || F;(p) — Fu(q) ||
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Figure2 Neighborhood matching. In order to synthesize the pixel value at ¢
in the filtered image By, we consider the set of pixels in B}, B¢, B,_;, and
By _1 around ¢ in the four images. We search for the pixel p in the A images
that give the closest match. The synthesis proceeds in scan-line ordering in
By.

is computed as a weighted distance over the feature vectors F'(p)
and F'(g), using a Gaussian kernel, so that differences in the fea-
ture vectors of pixels further from p and ¢ have a smaller weight
relative to the differences at p and ¢. We also normalize the vectors
so that each scale of the pyramid has equal weight. Note that some
special processing is required at boundaries, as well as at the lowest
resolution of the pyramid, since the neighborhoods are a little bit
different in these areas. We perform brute-force searches with only
the partial neighborhoods in these cases.

For the BESTAPPROXIMATEMATCH procedure, we have tried us-
ing both approximate-nearest-neighbor search (ANN) [1] and tree-
structured vector quantization (TSVQ) [20], using the same norm
over the feature vectors. In our experience, ANN generally provides
more accurate results for the same computation time, although it is
also more memory intensive. We used ANN for all of the examples
shown in this paper. Principal components analysis (PCA) can be
used to reduce the dimensionality of feature vectors leading to a
substantial speed-up in the search. We generally keep 99% of the
variance, which can lead to a reduction in dimensionality of about
an order of magnitude. However, using PCA can degrade the quality
of the results on some simple cases; it is most useful in cases with
large feature vector sizes (e.g., when steerable filters are used).

The BESTCOHERENCEMATCH procedure simply returns s(r*) +
(g — ™), where

r* = arg min |[Fy(s(r) + (¢ — 7)) — Fe(9)|*
re€N(q)

and N (q) is the neighborhood of already synthesized pixels adja-
cent to ¢ in By. This formula essentially returns the best pixel that
is coherent with some already-synthesized portion of B; adjacent
to ¢, which is the key insight of Ashikhmin’s method.

3.3 Features

Feature selection and representation is a large open problem and an
active area of research in machine learning. For now, we have exper-
imented with several different components for the feature vectors.
Using the RGB channels themselves is the most obvious choice
(and the first thing we tried). However, for some filters, we found
that our source pairs did not contain enough data to match the target
pair well using RGB color. This is due to the well-known “curse of



dimensionality:” the neighborhood space for RGB images is much
larger than for grayscale images, and thus a single image pair pro-
vides a correspondingly sparser sampling of the space for RGB
than for grayscale. Consequently, the neighborhood histogram of A
may still be poorly matched to B, whereas this is less of a problem
for grayscale images.

An alternative, which we have used to generate many of the re-
sults shown in this paper, is to compute and store the luminance
at each pixel and use it in place of RGB in the distance metric.
Luminance can be computed in a number of ways; we use the Y
channel from the YI1Q color space [16], where the | and Q chan-
nels are “color difference” components. This approach is motivated
by vision science: we are much more sensitive to changes in the lu-
minance channel than to changes in color difference channels [48].
After processing in luminance space, we can recover the color sim-
ply by copying the | and Q channels of the input B image into the
synthesized B’ image, followed by a conversion back to RGB. An
added benefit of this approach is the speedup inherent in performing
the matching and synthesis with one third as many color channels.
The downside, however, is that color dependencies in the analogy
filter are lost. In this paper, we worked in luminance space for the
blur filter, super-resolution, and artistic filter examples.

Another way to improve the perceptual results of matching is to
compute multiple scales of oriented derivative filters [4, 23, 54].
To this end, we can compute a steerable pyramid [45] for the lu-
minance of A and B and concatenate the filter responses to the
feature vectors for these images. The distance metric then becomes
a weighted combination of similarity in luminance, as well as sim-
ilarity in orientation among regions of the unfiltered images. We
used third-derivative steerable filters comprised of four filter ker-
nels for synthesizing the line art examples (Figure 8); for our other
experiments, we found them to make little or no difference.

3.4 Luminanceremapping

Converting images to luminance can still give poor overlap be-
tween image neighborhood histograms; for example, a light A will
be of little use when processing a dark B. As a preconditioning
step, we would like to discover a luminance transformation that
brings the histograms into correspondence. One standard approach
is histogram matching [9]; however, we find that it uses non-smooth
mappings with undesirable side-effects.

Our approach, instead, is to apply a linear map that matches the
means and variances of the luminance distributions. More con-
cretely, if Y(p) is the luminance of a pixel in image A, then we
remap it as

Y(p) — 2V () = pa) + pim

where p 4 and p g are the mean luminances, and o4 and o are the
standard deviations of the luminances, both taken with respect to lu-
minance distributions in A and B, respectively. We apply the same
linear transform to A’, in order to keep the training pair consistent.
In this paper, luminance remapping is only used for the color artistic
filters (Section 4.5).

This same approach can be extended to matching color distribu-
tions in a fairly straightforward way [25]. It is not used in this paper
because we found synthesis in luminance to give better results.

4 Applications

By supplying different types of images as input, the image analo-
gies framework can be used for learning filters for many differ-
ent types of applications. We describe here the applications that
we have experimented with so far. Timings for these tests are
discussed in the next section. Additional results can be found at
http://grail.cs.washington.edu/pr oj ectsimage-analogies.

4.1 Traditional imagefilters

As a simple test, we tried learning some traditional image-
processing filters, including a “blur” filter (Figure 3) and an “em-
boss” filter from Adobe Photoshop (Figure 4). While the image-
analogies framework gives adequate results, it is nowhere near as
efficient as applying the filter directly. Still, these experiments ver-
ify that the image analogies framework works for some basic filters.

4.2 Improved texture synthesis

Texture synthesis is a trivial case of image analogies, where the
elements of the A and B images are zero-dimensional or con-
stant. The algorithm we have described, when used in this way
for texture synthesis, combines the advantages of the weighted
L> norm and Ashikhmin’s search algorithm, although without the
speed of Ashikhmin’s algorithm. For example, the synthesized tex-
tures shown in Figure 5 have a similar high quality to those of
Ashikhmin’s algorithm, without the edge discontinuities.

4.3 Super-resolution

Image analogies can be used to effectively “hallucinate” more de-
tail in low-resolution images, given some low- and high-resolution
pairs (used as A and A’) for small portions of the images. (The
image analogies framework we have described is easily extended
to handle more than a single source image pair, which is what we
have done for these examples.) Figure 6 demonstrates this appli-
cation, using images of a set of maple trees and of a Dobag rug,
respectively. An interesting area for future work is to choose the
training pairs automatically for image compression, similar to frac-
tal image compression [3].

4.4 Texturetransfer

In texture transfer, we filter an image B so that it has the texture of
a given example texture A" (Figure 7). Texture transfer is achieved
by using the same texture for both A and A’. We can trade off the
appearance between that of the unfiltered image B and that of the
texture A by introducing a weight w into the distance metric that
emphasizes similarity of the (A, B) pair over that of the (A’, B')
pair. Increasing w causes the input image to be reproduced more
faithfully, whereas decreasing w ties the image more closely to the
texture. When w = 0, texture transfer reduces to ordinary texture
synthesis. For somewhat better results, we also modify the neigh-
borhood matching by using single-scale 1 x 1 neighborhoods in the
A and B images. Thus, F;(p) contains the value of the pixel p in
Ay (or By), as well as the usual neighborhoods around p in A} and
Aj_ (or By and By_,).

This application of image analogies may be somewhat counterintu-
itive, since an intuitive interpretation of an “analogy” in which A is
the same as A’ is as the identity filter. However, texture transfer is
actually another valid interpretation [25]. Image analogies synthe-
size images drawn from the statistical distribution of neighborhoods
in A’—in texture transfer, this is done while trying to match the B
image as closely as possible.

45 Artigticfilters

Although the problem is in general very difficult, we have had some
success in using image analogies to transfer various artistic styles
from one image to another, as shown in Figures 8-13 and 15.

For many example images, we do not have a source photograph
available; hence, a substitute must be created. We generally view
the A’ image as providing texture (e.g., pen strokes or paint tex-
ture) to an untextured image. To create A from A’, we apply an
anisotropic diffusion [37] or similar filter to A" (we used the “Smart
Blur” filter from Adobe Photoshop), in order to maintain sharp con-
tours but eliminate texture. For line art filters, we blur the image
before applying anisotropic diffusion.



For the color artistic filters in this paper, we performed synthesis in
luminance space, using the preprocessing described in Sections 3.3
and 3.4. (In general, we find that matching with color gives richer
and more appealing results, but can often fail quite dramatically.)

For line art filters, using steerable filter responses in feature vectors
leads to significant improvement. We suspect that this is because
line art depends significantly on gradient directions in the input im-
ages. We use steerable filter responses only for matching in A and
B (butnotin A'/B’).

We have also had some success when A is a known photograph and
A’ is a painting or drawing made by hand from the photograph.
(Unfortunately, these results are not shown here, for copyright rea-
sons.) In these cases, some care must be taken to carefully reg-
ister the photograph to the painting since our algorithm currently
assumes that the images are in approximate pointwise correspon-
dence. For our training pairs of this type, we first aligned the images
by manually estimating a global translation, rotation, and scale. \We
then warped the example source image with a custom image warp-
ing program designed for local image adjustments [25].

The scale of the training images determines the fineness of the fea-
tures in the B’ image and may be chosen by the filter designer, or
left as a parameter to the user applying the filter.

4.6 Texture-by-numbers

Texture-by-numbers allows new imagery to be synthesized by ap-
plying the statistics of a labeled example image to a new labeling
image B. For example, given a labeling of the component textures
of a realistic image, a new realistic one may be painted just by paint-
ing the arrangement of the component textures (Figure 14). An ex-
ample of this kind of synthesis, performed in real-time as part of a
“painting” interface, is demonstrated in the accompanying video.

A major advantage of texture-by-numbers is that it allows us to
synthesize from images for which ordinary texture synthesis would
produce poor results. Consider the photograph of an oxbow shown
in Figure 14. Although the image has textural regions, attempting
to create a new version of the river via ordinary texture synthesis
would produce very poor results, as the synthesis process would
mix unrelated textures. In statistical terms, the problem is that the
texture distribution is not stationary. On the other hand, specifying a
corresponding A image makes the A’ image into a useful texture, in
the sense that the conditional density of the A’ image is stationary
(now conditioned on A). Given a new B image, we can generate a
new scene to match it. Note that, in addition to filling in textures
in a sensible manner, the boundaries between texture regions also
match the examples, since they are synthesized from examples in A
with similar boundary shapes.

A more sophisticated example is shown in Figure 16. Treating the
scenery as a single texture produces poor results because the syn-
thesis mixes foreground texture with background texture. In other
words, the texture is stationary horizontally but not vertically. In
this case, we provide a gradient in the red channel of the A im-
age, which constrains the synthesis so that near elements will not
be mixed with far elements.

Texture-by-numbers requires an appropriate choice of the A image
in order to factor out non-stationary components of A’. In our expe-
rience, the synthesis is somewhat forgiving, degrading gracefully as
the assumptions become less appropriate. In principle, the A image
can be of arbitrary dimension and content. For example, it could in-
clude additional information about normals, depths, or orientations
[42] of the A’ image to improve the texture-by-numbers process.

This application bears some resemblance to the user-guided tex-
turing described by Ashikhmin [2]; however, it fixes several of
the problems with that method. In Ashikhmin’s method, multi-
ple passes are usually required for a good match. In addition,
Ashikhmin’s greedy search may create poor matches when a very

large example texture is used, since the synthesis cannot “restart”
until it finishes copying a patch. More significantly, the colors in
the target must be distinct: the algorithm would have difficulty, for
example, distinguishing between green trees and green grass. In ad-
dition, our algorithm also allows for extra channels of information
(such as depth, normals, etc.) to be used to control the synthesis.

5 Interactive editing

For many applications, the ability to directly manipulate an im-
age via a user interface is crucial. In the accompanying video, we
demonstrate an application in which a user can “paint” a landscape
by coarsely specifying locations for the trees, sky, etc. The main dif-
ficulty is that a single change to a B image could theoretically affect
the rest of the image, and the full synthesis algorithm is currently
too slow to run at interactive rates. However, we can exploit the fact
that, in practice, user painting operations only affect a small area of
the image at a time, and, under the locality assumption, these oper-
ations will have exponentially-decaying influence on distant image
pixels. Hence, we can maintain an acceptable image by updating
only the modified pixels and their neighbors.

The user interface presents a painting interface for placing RGB
values into the B or B’ images. The B image is initialized with
some default value (e.g., a blank image or a predefined image), and
a corresponding B’ image is synthesized from the initial B’. The
initial B’ may also be precomputed.

The key to making interactive painting efficient in this context is to
provide an immediate update of B’ using a coherence search (Sec-
tion 3.2) as the user paints, and to refine B’ with the full search (ap-
proximate plus coherence search) progressively, only as processing
cycles allow. Our implementation has two threads, an event han-
dler and a synthesis thread. When the user paints into the B im-
age, the event handler queues the painting locations at all scales
for updating. The synthesis thread performs a coherence search on
the changed pixels in scan-line order, though it uses the full search
with causal neighborhoods for every tenth pixel. Pixels that have not
been updated are marked as pixels to be ignored when comparing
neighborhood distances during coherence search. These pixels are
placed in another queue, and, whenever the first queue is empty, the
update thread performs full search with non-causal neighborhoods
on the contents of the second queue.

6 Discussion and future work

In this paper, we have described a framework for image processing
by example, which generalizes texture synthesis for the case of two
corresponding image pairs. We have shown how the framework de-
scribed is applicable to a wide variety of image texturing problems,
including image filtering, texture synthesis, super-resolution, tex-
ture transfer, artistic filters, and texture-by-numbers. As the frame-
work is very general, we suspect that it (or some related framework,
based on the same kinds of analogic reasoning) may eventually be
applicable to a much broader domain of problems, perhaps extend-
ing well outside of image processing—or even image synthesis—to
encompass such disparate varieties of data as motion capture, music
synthesis, and so on. Thus, we are intrigued by the many possibili-
ties for future research!

There is still much work to be done, both in improving the methods
that we have presented, and in investigating other approaches. Here
is a partial list of some of the directions we would like to pursue:

Speeding it up. The performance of our algorithm is logarithmic
with respect to the size (in pixels) of the training pair (due to using
heuristic search techniques), and linear with respect to the size of
the target. Although we have made use of several techniques to en-
hance performance (e.g., PCA, ANN), our algorithm is still rather
slow, taking anywhere from on the order of tens of seconds to do
simple texture synthesis, to a few minutes for the texture transfer



examples, to a few hours for the artistic renderings on a 1GHz PC
processor. One reason for this fairly poor performance is that our
implementation has never been hand-tuned, since we have been
interested more in ease of prototyping than in speed. We expect
that optimizing the implementation would give about a factor of 5
speed-up. In addition, we would like to explore better regression
and search techniques that could speed up the algorithm even more.

Estimating other types of image statistics. Capturing the style of a
filter from an example is a fundamentally difficult problem because
the solution is not unique and often depends on prior knowledge
that may be difficult to implement. Our approach attempts to cap-
ture low-level statistical features of the filter. Unfortunately, many
artistic styles involve larger-scale features that our approach does
not capture so well. More specialized image analogies methods
could be tailored to specific applications. For example, it would
be interesting to try to learn NPR filters by estimating statistics
of stroke shapes and positions; however, this likely entails diffi-
cult combinatorial optimization problems, as well as the problem
of acquiring training data.

Better features and similarity metrics. None of the neighborhood
distance metrics that we use provide perfect measures of percep-
tual similarity, since each one fails in a variety of situations. Our
algorithm, which attempts to combine the best attributes of the Lo
metric with those of Ashikhmin’s algorithm, still produces some
undesirable artifacts. Finding a better matching function and/or bet-
ter features is an important open area of research for image analysis
and synthesis applications.

Better color processing. In order to achieve good results for small
training sets, we have sacrificed the full use of color information
by using luminance space for some filters. There are many possible
ways to improve color processing. A simple improvement would
be to generate the | and Q channels of B’ by fitting a linear trans-
formation from the | and Q channels of A to A’ (similar to our
luminance matching step), and then applying this transform to the
I and Q channels of B. Another approach would be to improve
preprocessing to enable synthesis in full color, such as by allowing
different linear transformations for different image patches, or by
fitting a smooth, non-linear histogram matching function.

Learning image correspondence and registration. Another limita-
tion of our technique is that it assumes a pointwise correspondence
between the training images, which requires careful registration of
the example images. It would be more desirable to learn the filter,
while simultaneously learning the correspondence between pixels,
and even automatically apply a learned distortion during synthesis.

Combining with automatic texture segmentation. Our work gen-
eralizes recent results in texture synthesis. Whereas texture synthe-
sis algorithms can only resynthesize images from stationary statis-
tics, our methods can resynthesize non-stationary statistics based on
some user guidance. One possible extension of this work would be
to synthesize from non-stationary images in a completely automatic
fashion, perhaps using a texture segmentation as an input [35].

Extensions to 3D models and animation. An important extension
is to processing images of 3D models, where additional channels of
information (e.g., depths, normals, and silhouettes) can be used to
improve the filter reproduction. Likewise, there are natural exten-
sions of these ideas to creating video and animation.

Extensionsto other domains. We are interested in applying the im-
age analogy algorithm to a number of other filter learning problems,
such as scratch removal, alpha estimation, motion synthesis, musi-
cal synthesis, and so on. Moreover, it should be possible to gener-
alize the framework we have described to make use of analogies
between data in completely different domains. As a whimsical ex-
ample, A might be an image and A’ an interpretive dance based on
the image; a new image B could then be used to synthesize a new
interpretive dance B’. Several problems would need to be solved to

Unfiltered source (A) Filtered source (A’)

Unfiltered target (B) Filtered target (B’)
Figure 3 Toy example: Learning a blur filter. The A and A’ images com-
prise the training data. Images were converted to luminance, and then the filter

learned from A and A’ was applied to B to get B’. (Shore image courtesy
John Shaw [38].)

Filtered source (A") Filtered target (B’)

Figure 4 Toy example: Learning an emboss filter. The A and B images are
the same as in Figure 3.

make this possible. For example, the framework we have described
requires a a one-to-one correspondence between data in the train-
ing pair, and no such obvious correspondence would exist in this
case. Still, we are encouraged by our early results, and look for-
ward to improving these methods and exploring new applications
of analogic reasoning in computer graphics.
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Input Wei-Levoy Input Wei-Levoy

Ashikhmin Ours Ashikhmin Ours

Figure5 Improved texture synthesis. The textures synthesized with Wei and Levoy’s algorithm [49] give blurry results because the Lo norm is a poor measure of
perceptual similarity. Ashikhmin’s algorithm [2] gives high-quality coherent patches, but creates horizontal edges when patches reach the end of the source image,
such as in the upper right corner of the flower texture. Additionally, Ashikhmin’s algorithm does not capture appearance at multiple scales, such as the regular
pattern of the weave. Our algorithm combines the advantages of these two previous methods. We used ~ = 5 for both textures in this figure. (The input textures

were obtained from the MIT VisTex web page, Copyright © 1995 MIT. All rights reserved).

Training pairs (4, A") Training pairs (4, A")

Unfiltered target (B) Filtered target (B’) Unfiltered target (B) Filtered target (B’)

Figure 6 Super-resolution. For each example, the training pairs (above) contain low- and high-resolution versions of a portion of an image. This training data is
used to specify a “super-resolution” filter that is applied to a blurred version of the full image (below, left) to recover an approximation to the higher-resolution

original (below, right). (Maple trees image courtesy Philip Greenspun, http://philip.greenspun.com).



Figure 7 Texture transfer. A photograph (shown in Figure 8) is processed to have the weave and rug textures shown on the left. In each case, the texture is used for
both A and A’. The center and right result images show the effect of trading off fidelity to the source image versus fidelity to the texture. (The weave texture was
obtained from the MIT VisTex web page, Copyright © 1995 MIT. All rights reserved).

Unfiltered Target (B) Unfiltered Target (B)
Unfiltered source (A) Filtered source (A") Results (B’) Results (B')
Unfiltered source (A) Filtered source (A") Results (B') Results (B')

Figure8 Line art illustrations by example. Two illustration styles, defined by the hand-drawn A’ images, are applied to the two B images shown (at reduced size)
in the upper left. Each A image was created by applying a blur and an anisotropic diffusion to the corresponding A’. The resulting four B’ images are shown on

the right. The upper A’ image is from Gustave Doré’s illustrations for Don Quixote; the lower A’ is from an engraving by Francesco Bartolozzi, a Renaissance
artist.



Figure9 Unfiltered target images (B) for the NPR filters and texture transfer. (Leftmost image courtesy John Shaw [38].)

Unfiltered examples (A) Filtered examples (A”)

Figure 10 Training pairs for the color NPR filters used in this paper. The upper A’ image is a detail of Starry Night above the Rhone by Vincent Van Gogh; the
“unfiltered” source image was generated by processing the painting with Photoshop’s “Smart Blur” filter. The lower image pair is a photograph and a watercolor
created from it with a semi-automatic digital filter [10].

Figure 11 Boat paintings by example. The left image is painted in a style learned from a Van Gogh painting (Figure 10, top row); the right image is in the style of
a watercolor filter (Figure 10, bottom row).



Figure 12 Paintings by example. The left images are painted in a style learned from a Van Gogh painting (Figure 10, top row); the right images are in the style of
a watercolor filter (Figure 10, bottom row).



Unfiltered source (A) Filtered source (A") Filtered (B, k = 5)

Figure 13 Paintings by example, varying the coherence parameter «. The filtered target image (A’) is a detail of Still Life with Melon and Peaches by Edouard
Manet. Additional images are shown on the facing page in Figure 15. The source image is shown in Figure 9.

Unfiltered source (A) Filtered source (A")

Unfiltered (B) Filtered (B')

Figure 14 Texture-by-numbers. The unfiltered source image (A) was painted by hand to annotate A’. The unfiltered target image (B) was created in a paint
program and refined with our interactive editor; the result is shown in B’. (Oxbow image courtesy John Shaw [38].)



Filtered (B, k = 10) Filtered (B, k = 15)
Figure 15 Paintings by example, varying the coherence parameter . The training is from a painting by Manet. Additional images are shown on the facing page in
Figure 13. The source image is shown in Figure 9.

Unfiltered source (A) Filtered source (A")

Unfiltered (B) Filtered (B')

Figure 16 Rerouting the Potomac. Ordinary texture synthesis cannot reproduce the terrain in the photograph because it is not stationary: far elements are different
from near elements. The use of the gradient channel in A and B distinguishes near from far, allowing the photograph to be used for texture-by-numbers.
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