
SWISH: Semantic Analysis of Window Titles
and Switching History

Nuria Oliver, Greg Smith, Chintan Thakkar & Arun C. Surendran
Microsoft Research
Redmond, WA, USA

{nuria,gregsmi,acsuren}@microsoft.com

Chintan.S.Thakkar@iitkgp.ac.in

ABSTRACT
Information workers are often involved in multiple tasks and
activities that they must perform in parallel or in rapid suc-
cession. In consequence, task management itself becomes
yet another task that information workers need to perform
in order to get the rest of their work done. Recognition of
this problem has led to research on task management sys-
tems, which can help by allowing fast task switching, fast
task resumption, and automatic task identification. In this
paper we focus on the latter: we tackle the problem of auto-
matically detecting the tasks that the user is involved in, by
identifying which of the windows on the user’s desktop are
related to each other. The underlying assumption is that
windows that belong to the same task share some common
properties with one another that we can detect from data.
We will refer to this problem as the task assignment prob-
lem.

To address this problem, we have built a prototype named
Swish that: (1) constantly monitors users’ desktop activi-
ties using a stream of windows events; (2) logs and pro-
cesses this raw event stream, and (3) implements two crite-
ria of window “relatedness”, namely the semantic similarity
of their titles, and the temporal closeness in their access
patterns.

In addition to describing the Swish prototype in detail,
we validate it with 4 hours of user data, obtaining task clas-
sification accuracies of about 70%. We also discuss our plans
on including Swish in a number of intelligent user interfaces
and future lines of research.

General Terms: Algorithms.
Keywords:Automatic task identification, user task model-
ing, clustering, user activity monitoring.

1. INTRODUCTION AND RELATED WORK
Bannon et al. [2] observed more than twenty years ago

that information workers often switch between concurrent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

tasks or activities. This behavior has only increased in the
years since, receiving increasing attention in the research
community and the popular press. Numerous efforts have
been made to assist information workers in this realm. We
will refer to such multitasking assistance systems as “task
management systems”. Task management systems typically
provide some efficient way of switching from one set of win-
dows and applications to another set, as a basic form of task
switching.

Shorly after Bannon’s observations, Henderson and Card
[13] noted that tasks could be supported via the manage-
ment of “working sets” of windows, and identified desirable
properties of these task management systems, including:
fast task switching, fast task resumption, and easy reac-
quisition of the cognitive context associated with a task.

In addition to virtual desktop managers [13, 12], an ar-
ray of novel solutions have been proposed, including extend-
ing the user’s desktop with additional low-resolution screen
space [3], using 3D cues as in the TaskGallery [23, 27], us-
ing zoomable interfaces as in Pad++ [4], and using time
as a centralizing axis [21]. There also have been tiled win-
dow managers [7, 26], systems that bump irrelevant windows
away [5, 17], systems employing a central focus region and
a peripheral region for unused windows [22], and new, en-
hanced Taskbars [24]. Finally, there have been a number
of systems that assist users in their task management tasks
within a particular application, such as email [6].

In order to facilitate task management and task switch-
ing, these systems generally require knowledge of how the
user’s overall workspace is conceptually partitioned into the
individual constituent tasks. MacIntyre [18] et. al. defined
the concept of “working contexts” –coherent sets of tasks
typically involving the use of multiple applications, docu-
ments and communication mechanisms with others. In their
work, they recognized that a basic problem that needed to
be addressed (but they didn’t address due to its difficulty)
was determining which documents are associated with each
working context. We will name this problem the “task as-
signment” problem. Most systems rely on explicit user in-
put for such knowledge, despite the extra overhead this im-
poses. There have been fewer efforts toward the automatic
detection and recognition of the user’s tasks from computer
events, probably at least partially because of the difficulty
of such an endeavor. For example, when a new document or
window is opened, is it part of the current working context,
the start of a new working context, or a signal to shift to
some other existing working context? Finding answers to
these questions is the main purpose and contribution of the
swish system described in this paper.

The TaskTracer prototype by Dragunov et al. [25] ad-

dresses the task assignment problem, and is the most closely
related work to ours in Swish. TaskTracer is a desktop
software system aimed at recording in detail how knowl-
edge workers complete tasks, and intelligently leveraging
that information to increase efficiency and productivity. The
authors enumerate five desired capabilities of their system:
more task-aware user interfaces, more efficient task-interruption
recovery, better personal information management, work-
group information management and within-group workflow
detection and analysis. TaskTracer tracks most interactions
with a subset of typical desktop applications, including Mi-
crosoft’s Office 2003, Microsoft’s Visual Studio .NET, Win-
dows XP and phonecalls. In their most recent work, the
authors have added some supervised machine learning mech-
anisms for predicting the most likely folder (based on fre-
quency of access) that the user would access next (Folder-
Predictor) and the most likely task that the user is engaged
in (TaskPredictor).

We shall highlight now the main contributions of this pa-
per as differences between the TaskPredictor component of
TaskTracer and Swish:

1. Instead of being restricted to a set of predefined ap-
plications, Swish monitors events generated by any
application on the Windows PC. Fenstermacher and
Ginsburg [11] enumerated cross-application integration
as one of the key features of any user activity moni-
toring software.

2. Unlike TaskPredictor, where users need to manually
specify what tasks they are doing in the initial stage
of data collection, we opted for a completely unsuper-
vised approach. Users of Swish do not need to label
any of the tasks that they are performing at any in-
stant of time.

3. Both TaskPredictor and Swish include semantic anal-
ysis of window information. However, Swish also in-
corporates temporal analysis of the patterns of window
usage. We believe that it is important to leverage the
complementarity of the information derived from anal-
ysis of different nature. We will return to this issue in
Section 3.

4. Swish records all application events in the background,
in a completely unobtrusive manner, as the user works
on the computer. Users do not need to interact with
a special application as part of their work.

The rest of the paper is organized as follows. In Section
2 we describe in detail the architecture of the Swish pro-
totype. Section 3 is devoted to the description of the two
algorithms that we implemented for clustering windows au-
tomatically. Experimental results to validate Swish are in
Section 4. Section 5 briefly presents our plans in incorporat-
ing Swish in a number of user interfaces. Finally, Section 6
contains some conclusions and future lines of research.

2. ARCHITECTURE
The architecture of the Swish prototype, depicted in Fig-

ure 1, consists of two complementary applications we have
written to run on the Windows Operating System (OS), and
an associated SQL Server relational database.

Our first application, LogFeeder, incorporates an adap-
tation of a logging tool called VibeLog [15] to provide the
framework for computer activity collection. The Windows

OS publicly exposes a collection of events keyed by the win-
dow handle (HWND) of the window on which the event
occurred, and VibeLog programmatically hooks this collec-
tion (with the SetWinEventHook API) to receive events of
interest and collect associated interesting properties of the
relevant windows. These events are surfaced for every win-
dow on the system, regardless of the application that owns
the window. The standalone version of VibeLog writes its
time-stamped output sequentially to file in a form that can
then be imported into a database for offline analysis. The
purpose of LogFeeder is to take a stream of VibeLog out-
put, either directly from the embedded version of a running
VibeLog or from a previously recorded VibeLog session in
the database, and replay it in real time as a “live” inter-
process stream. Table 1 shows an abbreviated summary of
the structure of a typical VibeLog output row.

Figure 1: Block diagram of Swish’es architecture.

Our second application, ClusterFinder, listens for this
inter-process stream and uses it to build and maintain a
live “window model” representing the window state of the
system which generated the VibeLog output. This window
model contains a list of objects representing the open win-
dows on the system at any given moment in z-order (i.e.,
“depth” within the overlapping window system), and tracks
the history of the list and state changes to the windows in
the list. We can then create various modular algorithms
that analyze window-based user activity solely by query-
ing ClusterFinder’s window model. The advantage of this
infrastructure is that it allows us to experiment with an-
alyzing the live local session, as well as to record specific
session streams and iteratively evaluate the efficacy of our

Table 1: Description of the VibeLog output stream

Name of event Description Example
in stream value

Event Monotonically increasing 548
number event row number

Elapsed ms Millisecond timestamp 703656

Event NAME CHANGE, SHOW
name CREATE, ACTIVATE, etc.

HWND Win32 window handle 0x324E5

Title Current title of window “Re:Review”

ClassName Current window class name Tooltip 32

Process Name of executable Outlook.exe
Name which owns the window

Position Current window coordinates 10,4,73,14

StyleBits A bit field representing 0x96000000
the window’s “style” and 0x96000000

“extended style” attributes. 0x00000088
(WS VISIBLE,

WS CHILD, etc.)

algorithms by tweaking and testing them repeatedly against
the exact same session stream.

Basing our design on the VibeLog stream dictates that
the input features of our analysis algorithms are necessarily
restricted to what can be found in the VibeLog stream, and
the usefulness of the analysis is potentially dependent on
the ”correctness” of the window model being reconstituted
by the ClusterFinder application. This is complicated by
the fact that the original Windows OS event stream is not
itself 100% reliable –it sometimes omits events or contains
event sequences that violate the conceptual window state
machine (e.g., two DESTROY events for the same window
handle). We are continually working on improving the ro-
bustness of our window model in the face of a limited, noisy
event stream, and we are encouraged by the results so far.
As suggested by the screenshot in Fig 2, even without any
representation of window contents the graphical reconstruc-
tion of the session appears to be quite evocative of the actual
user experience.

3. AUTOMATIC WINDOW CLUSTERING
The data analysis in the Swish prototype is derived from

the assumption that windows that are related to each other
–based on a particular criterion– belong to the same task.
This assumption is motivated by the observation that tasks
typically involve multiple windows and those windows share
some features. We focus in this paper on two sets of features:

1. Semantic features: Windows associated with the
same task share common words in their content, and,
in particular, in their window titles.

2. Temporal features: Windows associated with the
same task are accessed in temporal proximity to each

other, i.e., input focus switches between windows be-
longing to the same task occur more frequently than
switches to windows outside the task.

Next, we shall describe in detail each of these two types
of analysis.

3.1 Clustering Based on Window Titles
The title of any arbitrary window on a Windows PC is

easily accessible through public Win32 programming inter-
faces (APIs), regardless of the application that the window
belongs to. The application is responsible for putting text
in this title that represents something meaningful about the
window’s content to the user. In this part of the analy-
sis we were interested in leveraging this lightweight, readily
accessible information. Specifically, we were interested in
exploring whether we could reliably and successfully iden-
tify windows that are related to each other by semantically
analyzing their titles. With this goal in mind, we reviewed
a spectrum of popular information retrieval techniques, fo-
cussing on unsupervised document clustering approaches.

3.1.1 Data Representation
Any text processing algorithm requires a convenient rep-

resentation of the corpus. Vector space models offer a term
x document matrix representation of the corpus in which
each document is a vector with terms being the dimensions.
In the simplest kind of representation, the ijth entry of the
matrix represents how many times the ith term appeared in
the jth document. The entry might be further processed to
be some function of this value as described in Section 3.1.3.

Clustering is possible because of the assumption that un-
derlying the corpus of data there is a small set of con-
cepts that these documents are about. Clustering algorithms
usually resort to dimensionality reduction techniques which
map documents from the high dimensional term space to
the low dimensional concept space. In the reduced term
space, we would like the semantically similar documents to
be nearer while those that are dissimilar to be apart. This
reinforces the idea that there is a latent structure in the
corpus. In an ideal case, we would want to faithfully recon-
struct the generative model that generated the corpus. A
generative model gives a precise methodology for construct-
ing documents once the parameters are specified.

In Swish we opted for statistical generative approaches.
In particular and after empirical experiments comparing the
performance various algorithms, we determined that the
Probabilistic Latent Semantic Indexing (PLSI) algorithm
[14] was the best suited to our problem. We shall describe
this algorithm in some detail below.

3.1.2 Title Preprocessing
Typical word preprocessing in information retrieval in-

cludes ignoring words that have no relationship to a win-
dow’s content, such as articles, conjuctions, prepositions,
etc. (so-called “stop-words”), and generalizing the remain-
ing words by stemming them1. In our system, the fact that
our source words are limited to those contained in the win-
dow title text presents some additional challenges compared
to full-document modeling. Some of the peculiarities of win-
dow titles include:

1. Short in length: Window titles are typically just
a few words long. Due to this scarcity of data, it is

1In Swish we use a variation of the stemmer by Porter [20].

(1) This section of ClusterFinder shows a listbox view
of all of the currently open windows in the system
being monitored, proceeding in order from the topmost
windows to the background windows (i.e. in z−order).
An asterisk marks the current foreground window.

(2) When a window is selected from the listbox in (1),
its detailed attributes are displayed here, including the
window handle, class name, title, style attributes and
clustering results.

(3) This section is a graphical view of the system being
monitored as reconstructed from the log stream by
ClusterFinder’s window model. As related clusters are
identified by the analysis module, the windows in the
same cluster are painted with a unique cluster color.

(4) This is the area of ClusterFinder used for settings
and controls, including turning on and off analysis
modules, specifying parameters, invoking training
sessions, and setting filters on the included windows.

Figure 2: Screenshot of a typical user’s desktop running the Swish prototype.

critical to ensure that the algorithms model only the
information-carrying words.

2. Additional stop-words: Most window titles contain
application-dependent words that have no relationship
to the content of the window. For example, “Microsoft
Internet Explorer” appears in every in Internet Ex-
plorer window title. In this phase of the processing,
we eliminate all application-dependent keywords.

3. Arbitrary words: It is not unusual for titles to have
arbitrary words that are the result of composing mul-
tiple words into one long word. For example, a docu-
ment could be named “hawaii vacation summer 2005.doc”,
and this document name might be put verbatim into
the window title by the application. In an ideal case,
we would like to split such a long word into its smaller,
meaningful units, i.e., “hawaii”, “vacation”, “summer”,
“2005”. Swish contains a module for splitting long
words (i.e., words whose length is above a threshold)
into its smaller components.

This preprocessing of the window titles has a significant
impact in the overall performance of the system, as described
in Section 4. At the end of this step, we have “clean” ver-
sions of the titles, ready to undergo the next step in the
analysis: feature extraction.

3.1.3 Feature Extraction
The most basic representation of the document corpus

consists of the raw frequencies of occurrence of terms in doc-
uments, tf. This representation has the disadvantage that
commonly occurring terms may unnecessarily make all doc-
uments look similar even when they are not characteristic
of a particular document. To compensate for the problem
ellicited above, the inverse document frequency measure or
tfidf adds a weight to the raw frequencies, corresponding to
the inverse frequency of documents idf, tfidf = tf ∗idf . The

idf measure for a term i is given by idfi = log |D|
(|Di|+1)

, where

|D| is the total number of documents and |Di| is the number
of documents containing term i. Intuitively, idf scales down
commonly occurring terms and scales up words which rarely
occur in documents and therefore are probably distinctive
for that document. The tfidf measure can be viewed as the
mutual information between terms and documents [1].

In Swish we obtained best results using the tfidf measure
and that is the measure used in the experiments reported in
Section 4.

3.1.4 Model Learning: Probabilistic Latent Seman-
tic Indexing (PLSI)

Probabilistic Latent Semantic Indexing [14] defines a gen-
erative model for the document-term pair (di, tj), with i =
1, ..., N and j = 1, ..., M . It assumes that every term-

document pair is independent given a hidden topic z, z =
1, ..., K. The graphical model for PLSI is depicted in Fig-
ure 3. From the Figure, the probability of (di, tj), P (di, tj)
is given by P (di, tj) = P (di)

∑
zZ

P (tj |zk)P (zk|di), where
P (tj |zk) and P (zk|di) form the model parameters that need
to be estimated from data. Note that, once the param-
eters are learned, PLSI does not provide a mechanism to
assign these values to an unseen document whose terms are
all new to the model. In that sense, PLSI would not be a
truly generative model, but an explanatory model for the
corpus. The parameters can be efficiently estimated using
the EM algorithm [10] such that the likelihood of the corpus
is maximized. The M-step equations are given by:

P (tj |zk) =

∑N

i=1 n(di, tj)P (zk|di, tj)
∑M

j=1

∑N

i=1 n(di, tj)P (zk|di, tj)
(1)

P (zk|di) =

∑M

i=1 n(di, tj)P (zk|di, tj)

n(di)
(2)

where M is the number of terms or words, N the number
of documents and Z the number of concepts.

The E-step equation is given by:

P (zk|di, tj) =
P (tj |zk)P (zk|di)

∑K

k=1 P (tj |zk)P (zk|di)
(3)

Figure 3: Graphical model representing the PLSI
model. Note how documents (d) and terms (t) are
independent from each other given the hidden topic
(z).

To get a clustering from the model parameters, we just
need to look at P (zk|di) for all k and assign document i to
the cluster that maximizes that probability. Note that it is
assumed that the number of hidden topics, Z, is known a
priori.

As with any local optimization algorithm, the EM algo-
rithm used to estimate the parameters of the PLSI model
is sensitive to its initialization point. In order to make sure
that the algorithm starts at a reasonable initial point, we
use the K-means algorithm to obtain the initial values of
the parameters. In the experiments described in Section 4
we learned 30 models with 30 different initializations and
computed their average performance.

Note that PLSI is a soft-clustering technique (i.e. prob-
abilistic). It has been reported in the literature to perform
better than other clustering techniques like agglomerative
clustering or CEM (Classification EM)[19]. In our experi-
ence, PLSI also had the best performance when compared
to other clustering algorithms such as CEM or K-means.

Figure 4 illustrates the title clustering module explained
above.

Figure 4: Block diagram of the title clustering mod-
ule.

3.2 Clustering Based on History
of Window Switches

The second module of analysis in Swish is inspired by
the observation that related windows are typically used in
temporal sequence. Swish keeps track of all the window
switching events that have taken place during a time interval
of length T , and automatically builds a window switching
matrix, WS, where each element wsij is proportional to the
number of times that the user switched from window wi to
window wj during the time period T .

We shall describe next the “window switching analysis” or
WSA, as it is illustrated in Figure 5. The window switching
matrix is used to build a directed graph (top, left graph in
Figure 5), where each node represents a window, the edges
in the graph correspond to transitions between windows and
their weight is proportional to the number of switches from
the window where the edge originates (parent) to the win-
dow where it ends (child). This graph is then moralized
[16] and pruned (top, right graph in Figure 5), eliminating
edges with weight less than a certain threshold2, correspond-
ing to spurious transitions. Finally, the graph’s maximal
cliques are automatically identified via the Bron-Kerbosch
algorithm [8] (bottom, right graph in Figure 5). Each of the
cliques contains the windows that are related to each other,
and therefore are assumed to belong to the same task. This
is depicted in the bottom, left graph of Figure 5.

Note that, due to the moralization of the graph, not all
the nodes (windows) in a clique need to have had transitions
among themselves.

In the experiments described in Section 4 we used a time
window T of length 5 minutes.

2In the experiments described in Section 4, we use 3 for the
threshold.

Figure 5: Data flow of the window switching algo-
rithm.

3.3 Ensemble Classification
An interesting and open research problem is that of com-

bining the outputs of different classifiers into one unified an-
swer. In the current version of the Swish prototype, we have
included a first approach to ensemble classification. First,
Swish clusters the windows based on their title information
via the PLSI algorithm. It then only resorts to the win-
dow switching algorithm when the semantic title process-
ing module is not sufficiently (i.e., above a given threshold)
confident about where a particular window belongs. This
situation typically arises when (1) there is a new title with
unseen words by the system, or (2) the probability that the
title belongs to each of the clusters is below a certain thresh-
old, i.e., the title does not fit well in any of the clusters.

We are currently exploring additional algorithms for en-
semble classification, including using spectral clustering tech-
niques from information retrieval [9] to cluster the window
titles, and incorporating the window switching history di-
rectly in the graph that the spectral clustering techniques
build. With this approach we would have the same repre-
sentation and mathematical framework in both the semantic
and temporal analysis.

4. EXPERIMENTAL RESULTS

4.1 Experimental Design
Evaluating unsupervised learning algorithms is not an easy

task. One standard way of doing it is by first manually la-
beling the data to create the ground truth class assignments
–usually a very tedious, labor-intensive and expensive pro-
cess. Then the clusters are formed via the algorithm that
needs evaluation. Finally, cluster identification is carried
out, which is usually done by looking at the % of documents
in a cluster that belong to a class. The largest % is assumed
to be the label of the class. Two quantitative measures are
typically extracted: precision, i.e., what % of documents in
a cluster belong to the class assigned to that cluster, and re-

call, i.e., what % of all documents that belong to that class
appear in this cluster. The F1 measure balances both recall
and precision in a single number:

F1 =
2 ∗ precision ∗ recall

precision + recall
(4)

where the higher the value of the F1 measure, the higher
the performance of the algorithm.

4.2 Results
To quantitatively evaluate the Swish prototype we col-

lected and manually labeled over 4 hours of user data for
a single user. There were 5 different main tasks that the
user worked on during that period of time. However, not all
windows in the system during that period of time belonged
to one of those tasks. In particular, about 20 − 30% of the
windows were spurious windows that didn’t belong to any of
the main tasks. Therefore recall is a more meaningful mea-
sure than precision in this context, because the clusters will
contain a significant number of windows that are noise in
the system, i.e., do not really belong to any of the clusters.

In a first set of experiments, we compared the precision
and recall of SWISH with and without preprocessing the
window titles, as described in Section 3.1.2. The impact of
preprocessing the titles was highly significant, as reflected
on Table 2. In this case, the optimal number of clusters was
5 and the measures are the averages over 30 runs.

Table 2: Average precision and recall measures with
and without preprocessing the window titles (5 clus-
ters).

With Without
Precision 0.49 0.39
Recall 0.72 0.65

Figure 6 contains the average recall, precision and F1 mea-
sure of the PLSI algorithm over 30 runs and with an increas-
ing number of clusters. Note how the optimal number of
clusters is 5, which corresponds to the true number of tasks.

1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of clusters

precision
recall
F1

Figure 6: Average precision, recall and F1 measure
for 2 to 10 clusters.

We ran a second set of experiments where we divided the
data into 1-hour chunks and we clustered those smaller sets.
Swish performed better clustering these smaller sets of data
than the entire corpus. Intuitively, this makes sense: the
user worked on fewer, more coherent tasks during the 1-hour
periods than during the entire 4-hour session. The average
number of tasks in this case was 3 and the best performance
corresponded to 3 clusters, with average (across all runs and
all time segments) recall 76%.

To have a better idea of the contents of the clusters, Figure
7 illustrates a few exemplary titles and the top 3 keywords
of the results of clustering a 30 minute portion of the data3.
In this case, the optimal number of clusters was 3. Note
how the titles belong to very different applications. For ex-
ample, in cluster number 2, the first two titles are from a
Microsoft Word document, the third title is from Microsoft
PowerPoint, and the fourth and fifth from Internet Messen-
ger.

Figure 7: Exemplary titles and top 3 keywords when
clustering 30 minutes of user data with 3 clusters.

Even though we only had ground truth data for one user,
we ran Swish on over 30 hours of data of six additional
subjects. Our anecdotal experience with these data mirrors
the quantitative results provided above.

Unfortunately there was no temporal information in the
ground truth file and therefore it was impossible to quan-
titatively evaluate the performance of the PLSI algorithm
in conjunction with the window switching algorithm. How-
ever, we found that window switching information helped
disambiguate cases where PLSI was uncertain and likely to
make a mistake in the classification. In particular, there
were several instances in the data where the user switched
back and forth between a few windows whose titles were not
semantically related, but belonged to the same task, such as
the user looking for a word document in his file system, con-
tacting a colleague via Messenger to ask about the location
of the document and doing an email search to find it as an
attachment. The ensemble classification (PLSI plus WSA)

3We have changed the last name appearing in the titles to
preserve privacy.

was able to correctly classify these cases. We are planning
on collecting and labelling additional data to quantitatively
evaluate the impact of WSA in the PLSI algorithm.

Finally, we would like to highlight the difficulty of the
problem that we are tackling. There has not been any pre-
vious work in addressing this problem in a completely unsu-
pervised manner. Being able to correctly cluster over 70%
of the windows, solely based on their titles, and probably up
to 80% when including the temporal window switching in-
formation is a remarkable result. We are very excited about
incorporating the Swish prototype into a range of intelligent
user interfaces, as further explained in the next Section.

5. APPLICATIONS TO IUI
We are planning on leveraging the information provided

by Swish in a number of intelligent user interfaces.
First, we are working on extending the Groupbar proto-

type [24] to automatically: (1) propose groups of windows
to the users, and (2) assign labels to the clusters, based on
the keywords for each cluster. These two new extensions
of the Groupbar were actually high in the list of suggested
improvements proposed by users as a result of a user study.
Moreover, both pieces of information are already available
in Swish.

Second, we are working on an implicit query system that
will display relevant information to the window that the user
is currently engaged with. We plan on using the keywords
of the cluster that the window belongs to as the words to
query on.

Third, we are implementing an automatic “desktop cleanup”
application that will automatically propose to close unused,
unrelated windows, i.e., windows that do not belong to any
of the current tasks.

Finally, we are incorporating Swish’s automatic window
clustering to a task management prototype that will enable
users to efficiently and seamlessly create, switch to, handle
and resume tasks.

6. SUMMARY AND FUTURE WORK
The work of information workers today is increasingly

fragmented by multitasking. Tasks usually involve docu-
ments and processes of a heterogeneous nature. With in-
creased multitasking, support for task management is itself
becoming a critically important task in supporting the rest
of the information worker’s work. In this paper we address
the challenge of task assignment, i.e., figuring out which
task the user is involved in at each instant of time, and
which documents or windows are part of that task. We be-
lieve that this constitues an important step towards more
efficient and automatic task management systems.

In particular, we have developed a prototype named Swish

for automatically detecting groups of windows that are re-
lated to each other. We assume that windows belonging to
the same task share certain features. In Swish we analyze
windows according to two types of features: (1) semantic
clustering of windows based on their titles, and (2) tempo-
ral clustering of windows based on how they are accessed
by the user. We have presented results in over 4 hours of
real data, obtaining task classification accuracies of about
70%, i.e., Swish assigned windows to the correct task 70%
of the time. We find our results highly encouraging and
we believe they constitute a significant step towards solving
the task-assignment problem in a completely unsupervised,
unobtrusive and automatic manner.

As previously described, we are currently working on in-
corporating Swish in a number of intelligent user interfaces.
In addition, we are exploring strategies for “ensemble clas-
sification”, i.e., combining the outputs of the different win-
dow classifiers in a mathematically sound way. We are also
very interested in combining long-term with short-term user
models, automatically estimating the optimal number of
tasks at any instant of time, and dynamically updating the
models once they become obsolete. Finally, we are looking
into other types of features that could be incorporated into
our ensemble classification to help improve task assignment
results.

7. ACKNOWLEDGEMENTS
The authors would like to thank John Winn and his team

for sharing their graphical models code, and Tara Matthews
for her valuable comments on the paper.

8. REFERENCES
[1] Aizawa. The feature quantity: An information

theoretic perspective of tfidf-like measures.
Information Processing and Management, 39:1:pp.
45–65, 2003.

[2] L. Bannon, A. Cypher, S. Greenspan, and M.L.
Monty. Evaluation and analysis of users’ activity
organization. In Proc. SIGCHI conf. on Human
Factors in Computing Systems (CHI’83), pages pp.
54–57, 1983.

[3] P. Baudisch, N. Good, and P. Stewart. Focus plus
context screens: combining display technology with
visualization techniques. In Proc. of UIST’01, pages
pp. 31–40, 2001.

[4] B. Bederson and J. Hollan. Pad++: A zooming
graphical interface for exploring alternative interface
physics. In Proc. ACM symposium on User interface
software and technology (UIST’94), pages pp. 17–26,
1994.

[5] B. Bell and S. Feiner. Dynamic space management for
user interfaces. In Proc. ACM symposium on User
interface software and technology (UIST’00), pages
pp. 238–248, 2000.

[6] V. Bellotti, N. Ducheneaut, M. Howard, and I. Smith.
Taking email to task: the design and evaluation of a
task management centered email tool. In Proc.
SIGCHI conf. on Human Factors in Computing
Systems (CHI’03), pages pp. 345–352, 2003.

[7] S. Bly and J. Rosenberg. A comparison of tiled and
overlapping windows. In Proc. SIGCHI conf. on
Human Factors in Computing Systems (CHI’86),
pages pp. 101–106, 1986.

[8] C. Bron and J. Kerbosch. Algorithm 457 –finding all
the cliques of an undirected graph. Communications
of the ACM, 16(9):pp. 575–577, 1973.

[9] S.C. Deerwester, S. Dumais, T.K. Landauer, G.W.
Fumas, and R.A. Harshman. Indexing by latent
semantic analysis. Journal of the American Society of
Information Science, 41(6):pp. 391–407, 1990.

[10] A.P. Dempster, N.M. Laird, and D.B Rubin.
Maximum likelihood from incomplete data via de em
algorithm. Journal of the Royal Statistical Society,
39-B:pp. 1–38, 1977.

[11] K.D. Fenstermacher and M. Ginsburg. A lightweight
framework for cross-application user monitoring.
Computer, 35(3):pp. 51–59, 2002.

[12] A. Goldberg. Smalltalk-80. Addison-Wesley, 1983.
[13] A. Henderson and S. Card. Rooms: the use of multiple

virtual workspaces to reduce space contention in a
window-based graphical user interface. ACM
Transactions on Graphics (TOG), 5(3):pp. 211–243,
1986.

[14] T. Hofmann. Probabilistic latent semantic indexing.
In Research and Development in Information
Retrieval, pages pp. 50–57, 1999.

[15] D.R. Hutchings, G. Smith, B. Meyers, M. Czerwinski,
and G. Robertson. Display space usage and window
management operation comparisons between single
monitor and multiple monitor users. In Proc. Conf. on
Advanced Visual Interfaces (AVI’04), pages pp. 32–39,
2004.

[16] F.V. Jensen. Bayesian Networks and Decision Graphs.
Springer Verlag, 2001.

[17] E. Kandogan and B. Schneiderman. Elastic windows:
evaluation of multi-window operations. In Proc.
SIGCHI conf. on Human Factors in Computing
Systems (CHI’97), pages pp. 250–257, 1997.

[18] B. MacIntyre, E.D. Mynatt, S. Voida, K.M. Hansen,
J. Tullio, and G.M. Corso. Support for multitasking
and background awareness using interactive peripheral
displays. In Proc. ACM symposium on User interface
software and technology (UIST’01), pages pp. 34–43,
2003.

[19] M. Meila and D. Heckerman. An experimental
comparison of several clustering and initialization
methods. Machine Learning, 42:9–29, 2001.

[20] M. Porter. An algorithm for suffix stripping. Program,
14(3):pp. 130–137, 1980.

[21] J. Rekimoto. Time-machine computing: A
time-centric approach for the information
environment. In Proc. ACM symposium on User
interface software and technology (UIST’99), pages
pp. 45–54, 1999.

[22] G. Robertson, E. Horvitz, M. Czerwinski,
P. Baudisch, D.R. Hutchings, B. Meyers, D. Robbins,
and G. Smith. Scalable fabric: flexible task
management. In Proc. Conf. on Advanced Visual
Interfaces (AVI’04), pages pp. 85–89, 2004.

[23] G. Robertson, M. van Dantzich, D. Robbins,
M. Czerwinski, K. Hinckley, K. Risden, D. Thiel, and
V. Gorokhovsky. The task gallery: a 3d window
manager. In Proc. SIGCHI conf. on Human Factors in
Computing Systems (CHI’00), pages pp. 494–501,
2000.

[24] G. Smith, P. Baudisch, G. Robertson, M. Czewinski,
B. Meyers, D. Robbins, and D. Andrews. Groupbar:
The taskbar evolved. In Proc. OZCHI’03, pages pp.
41–50, 2003.

[25] S. Stumpf, X. Bao, A. Dragunov, T.G. Dietterich, J.L.
Herlocker, K. Johnsrude, L. Li, and J. Shen.
Predicting user tasks: I know what you’re doing! In
National Conference on Artificial Intelligence
(AAAI’05), pages pp. –, 2005.

[26] W. Teitelman. Methodology of Window Management,
chapter Ten years of window system - A retrospective
view. Berlin: Springer-Verlag, 1986.

[27] H. Wurnig. Design of a collaborative multi-user
desktop system for augmented reality. In Proc. Central
European Seminar in Computer Graphics, 1998.

