


Towards Perceptual Intelligence:

Statistical Modeling of

Human Individual and Interactive Behaviors

by

Nuria M. Oliver

B.S., Universidad Polit�ecnica de Madrid (1992)
M.S., Universidad Polit�ecnica de Madrid (1994)

SUBMITTED TO THE PROGRAM IN MEDIA ARTS AND SCIENCES, SCHOOL OF
ARCHITECTURE AND PLANNING, IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2000

c
 Massachusetts Institute of Technology 2000. All rights reserved.

Author
Program in Media Arts and Sciences

April 28, 2000

Certi�ed by
Alex P. Pentland

Academic Head and Toshiba Professor of Media Arts and Sciences
Media Laboratory, MIT

Thesis Advisor

Accepted by
Stephen A. Benton

Chairman, Department Committee on Graduate Students
Program in Media Arts and Sciences



Towards Perceptual Intelligence:

Statistical Modeling of

Human Individual and Interactive Behaviors

by

Nuria M. Oliver

Submitted to the Program in Media Arts and Sciences
on April 28, 2000, in partial ful�llment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This thesis presents a computational framework for the automatic recognition and prediction of
di�erent kinds of human behaviors from video cameras and other sensors, via perceptually intelligent
systems that automatically sense and correctly classify human behaviors, by means ofMachine Per-
ception and Machine Learning techniques. In the thesis I develop the statistical machine learning
algorithms (dynamic graphical models) necessary for detecting and recognizing individual and in-
teractive behaviors. In the case of the interactions two Hidden Markov Models (HMMs) are coupled
in a novel architecture called Coupled Hidden Markov Models (CHMMs) that explicitly captures
the interactions between them. The algorithms for learning the parameters from data as well as
for doing inference with those models are developed and described. Four systems that experimen-
tally evaluate the proposed paradigm are presented: (1) LAFTER, an automatic face detection and
tracking system with facial expression recognition; (2) a Tai-Chi gesture recognition system; (3)
a pedestrian surveillance system that recognizes typical human to human interactions; (4) and a
SmartCar for driver maneuver recognition.

These systems capture human behaviors of di�erent nature and increasing complexity: �rst,
isolated, single-user facial expressions, then, two-hand gestures and human-to-human interactions,
and �nally complex behaviors where human performance is mediated by a machine, more speci�cally,
a car. The metric that is used for quantifying the quality of the behavior models is their accuracy:
how well they are able to recognize the behaviors on testing data. Statistical machine learning usually
su�ers from lack of data for estimating all the parameters in the models. In order to alleviate this
problem, synthetically generated data are used to bootstrap the models creating 'prior models' that
are further trained using much less real data than otherwise it would be required. The Bayesian
nature of the approach let us do so.

The predictive power of these models lets us categorize human actions very soon after the begin-
ning of the action. Because of the generic nature of the typical behaviors of each of the implemented
systems there is a reason to believe that this approach to modeling human behavior would generalize
to other dynamic human-machine systems. This would allow us to recognize automatically people's
intended action, and thus build control systems that dynamically adapt to suit the human's purposes
better.
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Chapter 1

The Problem of Human Behavior

Modeling

Introduction and Motivation

Over the last decade there has been growing interest within the computer vision and machine

learning communities in the problem of analyzing human behavior from sensor information,

such as video ([53],[25],[183], [39], [159], [97],[42], [67]). These systems typically consist of a

low- or mid-level computer vision system to detect and segment a moving object | human

or car, for example | and a higher level interpretation module that classi�es the motion

into `atomic' behaviors such as, for example, a smile, a pointing gesture, or a car turning

left.

However, there have been relatively few e�orts to understand human behaviors that

have substantial extent in time, particularly when they involve interactions between several

agents. This level of interpretation is the goal of the thesis, with the intention of building

systems that can deal with increasingly more complex human behaviors, from single-user

facial expressions to interactive driving behaviors where complex interactions with the sur-

rounding tra�c take place.

In this thesis I propose a computational framework for human behavior recognition

and prediction via Perceptually Intelligent Systems that automatically sense and correctly

classify real human behaviors by means of Machine Perception and Machine Learning Tech-

niques. The proposed framework could be psychologically plausible at a general level, ad-

dresses many of the problems that current behavior theories su�er from and it is evaluated
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with experimental data of increasing behavioral complexity collected in four di�erent do-

mains:

1. Individual, isolated behaviors in the LAFTER [171] (Lips and Face TrackER) system:

a real-time system for face detection, tracking and facial expression recognition (see

�gure 1-1 1),

2. Body gestures in a Tai-Chi real-time gesture recognition system,

3. Human to human interactive behaviors in a visual surveillance system for detection

and recognition of human-to-human interactions [173] (see �gure 1-1),

4. Multi-agent interactive behaviors when mediated by a machine in the MIT Media Lab

SmartCar testbed. More speci�cally recognition of driver's behaviors at a tactical

level, with emphasis on how the context (road lanes, surrounding tra�c) a�ects the

driver's performance (see �gure 1-2).

As can be seen in �gure 1-3 the proposed model's architecture is composed of a hierarchy

of two layers. At the bottom (�rst layer) there is the Perceptual System, composed of

cameras and other sensors. The signals captured by the sensors are the input to a Kalman

Filter. At the top (second layer) there is the behavior models via dynamic graphical models.

The Kalman �ltered variables are the observations of the dynamic graphical models (HMMs

or CHMMs) at the second layer. The proposed architecture includes a bottom-up stream of

information provided by the various sensors, and a top-down information 
ow through the

predictions provided by the behavior models. Consequently a Bayesian approach {such as

the one followed here{ o�ers a mathematical framework for both combining the observations

(bottom-up) with complex behavioral priors (top-down) to provide expectations that would

be fed back to the perceptual system.

From a practical viewpoint, there are many motivations and potential applications of

these systems:

1. LAFTER: video-conferencing, real-time computer graphics animation, \visual speech"

recognition and \virtual windows" for visualization. Of particular interest is its ability

for accurate, real-time classi�cation of the user's mouth shape without constraining

1Appendix 2 contains the color version of the �gures that have color
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head position; this ability makes possible (for the �rst time) real-time facial expression

recognition in unconstrained o�ce environments.

2. Visual Surveillance (pedestrian interaction recognition): visual surveillance systems,

anomaly detection, automatic video parsing and interpretation.

3. Smart Car: drivers' assistants, emergency countermeasure systems, and realistic tac-

tical reasoning modules for car simulators.

Perceptual Intelligence

The computational tasks involved in the systems developed in this thesis combine ele-

ments of AI/machine learning and perceptual computing (computer vision, signal process-

ing) yielding to a new research area called Perceptual Intelligence, which brings together

perception and cognition in the same framework. Two hundred years ago, Kant provocately

suggested an intimate connection between perception and concepts. \Concepts without per-

cepts", he wrote, \are empty; percepts without concepts are blind". However, traditional

research in Arti�cial Intelligence has tried to model concepts while ignoring perception, even

though high-level perceptual processes lie at the heart of human cognitive abilites. Cognition

cannot succeed without processes that build up appropriate representations. Conceptual

processes should, thus, be studied in conjunction with the perceptual substrate on which

they rest, and with which they are tightly coupled. On the other hand, our perception of any

given situation is guided by constant top-down in
uence from the conceptual level. With-

out this conceptual in
uence, the representations that result from such perception will be

rigid, in
exible, and unable to adapt to the problems provided by many di�erent contexts.

The 
exibility of human perception derives from constant interaction with the conceptual

level. I would argue that perceptual processes cannot be separated from other cognitive

processes even in principle, and therefore traditional AI models cannot be defended by sup-

posing the existence of a 'representation module' that supplies representations ready-made.

Recognizing the centrality of perceptual processes makes AI more di�cult, but much more

interesting. Integrating perceptual processes into a cognitive model leads to 
exible repre-

sentations, and 
exible representations lead to 
exible actions. This is precisely the goal at

the heart of Perceptual Intelligence.

The framework presented in this thesis focuses on perceptually intelligent systems that
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understand certain aspects of human behavior, i.e. 'behavioral systems'. Building these sys-

tems presents challenging problems in at least two domains: from a Perceptual Computing

viewpoint, it requires, for example, real-time, accurate and robust detection and tracking of

the objects of interest in an unconstrained environment; from aMachine Learning and Arti-

�cial Intelligence perspective behavior models for interacting agents are needed to interpret

the set of perceived actions and in many situations detect anomalous behaviors or poten-

tially dangerous situations. Moreover, all the processing modules need to be integrated in

a consistent manner.

My approach to modeling human individual and interactive behaviors is to use su-

pervised statistical machine learning techniques to teach the system to recognize normal

single-person behaviors, two-hand body gestures, common person-to-person interactions,

and driver maneuvers. More speci�cally the focus is on the interactions between di�erent

agents, in how the contextual information a�ects the performance and in predicting what

is the most likely action to happen next. There are a number of important AI problems

involved in such tasks: (1) Decision-making has to take place in real-time; (2) the sensors

are noisy, with signi�cant errors in the estimation of the position of the face, body, hands or

other cars. Moreover, some of the objects might not be detected at all; (3) the world is only

partially observable {vehicles, for example, might be occluded and all driver's intentions

are hidden; (4) �nally a successful system should have a very small false alarm rate. This

is particularly important in the visual surveillance system.

Taxonomy

The modeling approach developed in the thesis follows the taxonomy proposed by Pentland

([180]): channels, time scale and intentionality. Figure 1-4 illustrates the taxonomy and the

regions of the space that the work of this thesis covers.

� Channels: The domain is typically broken down into several channels of information:

face, whole-body, car internal signals, voice, pressure, etc. These channels are mostly

used in a complementary or redundant manner. In general however they should be

considered together, as a multi-dimensional manifold. For example, voice, gesture and

facial expressions are intimately bound together and should be integral part of the

same system. In the work of this thesis I have incorporated channels of di�erent na-

ture: face and mouth, two hands, whole-body, surrounding tra�c, road lanes, driver's
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gaze and car internal signals.

� Time Scale: Each channel carries relevant information at a wide range of time

scales. At the longest scale, are semi-permanent physical attributes like facial shape

and appearance, vocal pitch, body shape and gait. These long-term characteristics

are all useful for identi�cation, and are predictive of variables such as age, sex or

area of origin. At shorter time scales are goal-directed behaviors which typically have

durations ranging from a few seconds to minutes or even hours. Examples are getting

out of a car and walking to a building, or changing lanes while driving. Behaviors

are in turn composed of a multi-modal sequence of individual actions, with a shorter

time expand, such as frowning, pointing or starting to turn the steering wheel before

changing lanes. These individual actions are often broken into 'microactions' such as

the facial action units of the FACS system [62]. However it is uncertain whether such

microactions constitute an important level of representation. Humans are normally

unaware of these microactions (they would correspond, for example, to automatic,

re
ex, unconscious acts). Therefore we are unable to independently and consciously

control them. These observations support the argument that microactions are more

likely to be a convenient accounting system for psychologists rather than something

intrinsic to the structure of the behavioral phenomena.

� Intentionality: The intentionality scale ranges from simple phenomena in which

intentionality does not need to be considered to behaviors of increasingly complex

intentionality. The testbeds developed in this thesis explore the intentionality axis,

starting with simple individual facial expressions and ending with complex multi-agent

car interactions. Moreover, the increasing behavioral complexity of the systems yields

to longer time scales and an increasing number of multi-modal channels. Simple phys-

ical observations {the traditional focus of computer vision{ typically do not involve

intentionality. The shape or appearance of a face, the body pose, the body shape and

dimensions, the acceleration in a car are all simple physical observations.

The �rst level at which intentionality must be considered is observation of direct

behaviors. These are behaviors that have only the intention of directly in
uencing

the surrounding physical environment, and include mechanic activities such as direct

manipulation, construction, cleaning, etc. To interpret such behaviors it is normally
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necessary to know about both the person's (agent) movements and the objects in the

surrounding environment, because the movements' intended purpose is to manipulate

the object.

In contrast, communicative behaviors have the intention of in
uencing another agent,

something often referred to as higher-order intentionality. Included are most ex-

pressions and gestures, even unconscious ones since these have evolved to serve an

important role in interpersonal communication. The ability to avoid questions of in-

tentionality is a great advantage for todays' applications, but as we move towards

more generally competent systems we will have to directly confront the problem of

interpreting intentionality. One area where consideration of intentionality is di�cult

to avoid is viewpoint. In most vision applications there have traditionally been only

two viewpoints: external (third person perspective) and object-centered (�rst person

perspective). However there is an important "second person perspective", where the

observed persons are interacting with you (�rst person) and their intentions toward

you become a primary consideration. And it is precisely this second person perspec-

tive that some of the testbeds developed in this thesis have to deal with, by modeling

pedestrian interactions or how the surrounding cars' actions a�ect the driver's perfor-

mance and vice versa.

To recognize communicative behaviors it is usually necessary to know something about

the context, for instance, if there are other people (agents) present and what is the

goal of the interaction. The systems developed in this thesis model these kind of

behaviors. For example, the gesture of extending an arm and �nger together could be

a pointing gesture (communicative behavior), an action for pushing a button (direct

behavior) or even an unconscious muscle stretch (non-intentional behavior). It is the

presence and relative location of a button or a human observer that di�erentiates these

three behaviors. Therefore, the context is crucial element for correctly interpreting

intentional behaviors. This is one of the emphasis of this thesis.

Contributions

The main contributions of this thesis are consequence of the modeling approach proposed

in my work on Perceptual Intelligence. Namely, the combination of Perceptual Computing
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with Statistical Machine Learning (dynamic graphical models or DynPINs) for recogniz-

ing human behaviors of increasing complexity in di�erent domains. More speci�cally the

proposed framework emphasizes the context through the interactions between the agents

as an important element of behavior modeling. In the proposed taxonomy (see section 1)

the domains explored in this thesis proceed along the "intentionality" axis, with increasing

complexity in the nature of their typical behaviors. Some of the key contributions are:

1. Perception: Blob-based computer vision methodology for face, mouth and pedestrian

tracking; Kalman Filters for robust tracking; active camera control via a PD controller;

o�-line and on-line EM algorithms for blob parameter estimation; eigen-background

for pedestrian detection.

2. Machine Learning: dynamic graphical models for human behavior recognition and

prediction: HMMs for individual behaviors and CHMMs for interactive behaviors;


exible and interpretable priors using synthetic data generated by synthetic behavioral

agents.

The proposed model has been validated in 4 systems with real human data:

1. LAFTER: Active camera real-time system for human face and mouth detection and

tracking, and real-time face expression recognition system using HMMs.

2. Tai-Chi gesture recognition: CHMMs for two-hand real-time gesture recognition.

3. Pedestrian Surveillance: pedestrian tracking and interaction recognition, and 
exible

and interpretable prior behavior models by means of synthetic agents.

4. SmartCar: data acquisition and playback software and hardware, graphical models

for driver maneuver recognition and prediction at a tactical level, analysis of the most

relevant features, and driver maneuver prediction on average 1 second before the

maneuver takes place.

Thesis Structure

This thesis is structured as follows. Chapter 2 describes relevant theories of human be-

havior from Psychology and Philosophy, with emphasis on those theories that deal with

time, causality and dynamics. First, the organization of action and the frame problem
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are presented. Second, speci�c behavior theories that are relevant to this thesis work are

described in some detail: trace analysis, GOMs (Goals, Operators, Methods and Selection

Rules), Soar, automated and semi-automated analysis, functionalism, state-based models,

and dynamic systems theory. Chapter 3 describes in detail the perceptual aspects of each

of the systems developed in the thesis. Depending on the domain, di�erent perceptual in-

put modalities have been used: (1) In the case of facial expression recognition, an active

camera looking at the user's face; (2) in the framework of pedestrian interactions recogni-

tion, a static camera with wide �eld-of-view watching a dynamic outdoor scene; (3) in the

driver domain, multiple sensors of di�erent nature are used: internal sensors of the car's

internal state {acceleration, steering wheel angle, gear, speed and break pedal action{, and

cameras for the visual context. The mathematical framework for learning from data indi-

vidual, person-to-person or multi-agent interactive behaviors is presented in chapter 4. A

detailed description of the theory behind graphical models and dynamic graphical models

is presented. Chapter 5 describes the experiments that validate the mathematical approach

described in chapter 4. I have developed four major testbeds for modeling human behavior

in real situations. These systems are evaluated by their recognition accuracy on testing

data. In the case of interacting behaviors, the performance of the CHMMs (see section

4.11) is compared to that of HMMs, a state-of-the-art competitive learning architecture.

Some applications of the systems are also presented. Finally, chapter 6 summarizes this

thesis work, highlights its major contributions and sketches future lines of research.
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Chapter 2

Related Human Behavior Models

in Psychology and Philosophy

This chapter describes relevant theories of human behavior from Psychology and Phi-

losophy. Given that this thesis work focuses on human behavior modeling by means of

dynamic graphical models, this chapter emphasizes particularly those theories that deal

with time, causality and dynamics. First, the organization of action and the frame problem

are presented. Second, speci�c behavior theories that are relevant to this thesis work are

described in some detail: trace analysis, GOMs (Goals, Operators, Methods and Selection

Rules), Soar, automated and semi-automated analysis, functionalism, state-based models,

and dynamic systems theory.

Some of the issues raised by these psychological and philosophical theories of human

behavior are addressed in this thesis work from a computational viewpoint. For example,

philosophers and psychologists have proposed �nite state automata for explaning human

behavior. The behavior recognition framework proposed in this thesis is a non-deterministic

version of �nite state automata based on dynamic graphical models (explained in chapter

4). These models capture the internal dynamics of the system in a probabilistic, statistically

driven manner.

2.1 Organization of Action

The nature of intelligence lies in the organization principles that enable living organisms to

make rapid adjustments of patterns of action in response to the environment. No movement
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in nature is random, it always serves the purpose of "adapting" the state of the system to

the external conditions. No matter how intelligent a living being's action appears to be, that

action satis�es the same general principle. The reason human actions look more complex

than the actions of inanimated matter is because of the complexity of the human machine,

i.e. of the brain's neural circuitry. The subtleties of goal, intent, purpose are but conse-

quences of the hierarchical synthesis of intermediate units. The elementary units of behavior

(re
ex, oscillator, servomechanism, i.e. external stimulus to internal signal to muscle con-

traction) are "catalyzed" by units at the higher levels of the system. Gallistel describes the

interaction principles that govern the units of behavior (reciprocal facilitation, reciprocal

inhibition, chaining, superimposition, acceleration/deceleration, corollary discharge, etc).

The goal is to explain how an action that looks like a whole can be decomposed in many

coordinated lower-level levels. The computational models of human behavior proposed in

this thesis re
ect this hierarchical structure where long, complex behaviors can be expressed

as the succession of shorter and simpler actions (states in a HMM, for example).

2.1.1 The Frame Problem

According to McCarthy ([146],[148], [147]), knowledge representation must satisfy three

fundamental requirements: ontological (must allow one to describe the relevant facts), epis-

temological (allow one to express the relevant knowledge) and heuristic (allow one to perform

the relevant inference). Arti�cial Intelligence can be de�ned as the discipline that studies

what can be represented in a formal manner (epistemology) and computed in an e�cient

manner (heuristic). McCarthy developed a situation calculus where temporally limited

events, or situations (snapshots of the world at a given time), are represented by associat-

ing a situation of the world (set of facts that are true) to each moment in time. Actions and

events are functions from states to states. An interval of time is a sequence of situations, a

chronicle of the world. The history of the world is a partially ordered sequence of states and

actions, where the states are permanent and the actions change. Each situation is expressed

in a formula of �rst-order predicate logic. Causal relations between two situations can then

be computed. A state is expressed by means of a logical expression that relates objects in

that state. An action is expressed by a function that relates each state to another state.

McCarthy's frame problem states that it is not possible to represent what does not change

in the universe as a result of an action. There are two complementary paradoxes associated
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with the frame problem: the rami�cation problem (in�nite things change because one can

go into greater and greater detail of description) and the quali�cation problem (the number

of preconditions to an action is also in�nite). Predicate circumscription consists of adding

an axiom that states what is abnormal to the theory of what is known. Circumscription

deals with default inference by minimizing abnormality. The objects that can be shown to

have a certain property, from what is known of the world, are all the objects that satisfy

that property (or, the only individuals for which that property holds are those individuals

for which it must hold).

Causal organization is central to the explanation of behavior. A system's behavior is

determined by its underlying causal organization. Given a pattern of causal interaction

between substates of a system, for instance, there will be a computational description that

captures that pattern. Computational descriptions of this kind provide a general framework

for the explanation of behavior. The behavior models proposed in this thesis (dynamic

graphical models) intrinsically capture causal relationships between the variables in the

system. In the next sections I will describe in certain detail theories of human behavior that

have played and play an important role within the Psychology and Philosophy communities.

I will compare and contrast these theories with the computational model of human behavior

proposed in this thesis.

2.2 Behavior Theories

This section describes behavior theories proposed and developed in Psychology and Philos-

ophy viewpoint. Only theories that are relevant to this thesis work are presented. Time,

causality and dynamics lie at the core of human behavior in general, and in particular of the

models proposed in this thesis. In consequence, I will focus on the role that time, causality

and dynamics play in these theories, starting with the simplest models and �nishing with

the most sophisticated models, where time and dynamics are central.

2.2.1 Tracing and GOMS

Tracing is a rigorous form of sequential protocol analysis. It has become increasingly pop-

ular in various �elds and under various appellations. To name a few, cognitive scientists

have employed trace-based protocol analysis to develop and re�ne cognitive process mod-
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els; researchers in human-computer interaction have employed tracing, especially sequence

comparison techniques, to study the �ts of user models; and builders of intelligent tutor-

ing systems have utilized model tracing or tracking to determine the user's solution path

through a student model of the domain.

Newell and Simon ([164],[223]) provided arguably the most in
uencial contribution to the

methodological foundations of tracing. Their work formalized the notion of the problem

space and illustrated how subject protocols could help determine a subject's particular

solution path through the space. They also demonstrated how one can test process models

by mapping their predictions directly onto the observable actions of human subjects. This is

closely related to the notion of perceptually intelligent systems and to the validation method

used in this thesis.

One of the �rst implementations of Newell's et al proposed framework are GOMS. GOMS

is a family of techniques proposed by Card, Moran, and Newell ([41]), for modeling and

describing human task performance. GOMS is an acronym that stands for Goals, Operators,

Methods, and Selection Rules, the components of which are used as the building blocks for

a GOMS model. Goals represent the goals that a user is trying to accomplish, usually

speci�ed in a hierarchical manner. Operators are the set of atomic-level operations with

which a user composes a solution to a goal. Methods represent sequences of operators,

grouped together to accomplish a single goal. Selection Rules are used to decide which

method to use for solving a goal when several are applicable.

Once the GOMS model has been developed, predictions of learning and performance

can be obtained. A GOMS description is also a way to characterize a set of design decisions

from the point of view of the user, which can make it useful during, as well as after, design.

It is also a description of what the user must learn, and so can act as a basis for training

and reference documentation.

Actually carrying out a GOMS analysis involves de�ning and then describing in a formal

notation the four basic elements, i.e. the user's Goals, Operators, Methods, and Selection

Rules. The hardest elements to identify and de�ne are the Goals and Methods. The

Operators are mostly determined by the hardware and lowest-level software of the system,

such as whether it has a mouse, for example. Thus the Operators are fairly easy to de�ne.

The Selection Rules can be subtle, but usually they are involved only when there are clear

multiple methods for the same goal. In a good design, it is clear when each Method should
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be used, so de�ning the Selection Rules is (or should be) relatively easy as well.

Identifying and de�ning the user's Goals is often di�cult, because it requires detailed

examination of the task that the user is trying to accomplish, often going beyond just

the speci�c system to the context in which the system is being used. This is especially

important in designing a new system, because a good design is one that �ts not just the

task considered in isolation, but also how the system will be used in the user's job context.

One critical process involved in doing a GOMS analysis is deciding what and what not

to describe. The mental processes of the user can be of incredible complexity; trying to

describe all of them would be hopeless. However, many of these complex processes have

nothing to do with the design of the interface, and so do not need to be analyzed. For

example, the process of reading is extraordinarily complex; but usually, design choices for

a user interface can be made without any detailed consideration of how the reading process

works. We can treat the user's reading mechanisms as a "black box" during the interface

design. We may want to know how much reading has to be done, but rarely do we need to

know how it is done. So, we will need to describe when something is read, and why it is

read, but we will not need to describe the actual processes involved. A way to handle this in

a GOMS analysis is to bypass the reading process by representing it with a dummy or place

holder operator. Making the choices of what to bypass is an important, and sometimes

di�cult, part of the analysis. This is related to feature selection problem, where the most

relevant, meaningful features to the particular task should be considered. It is, de�nitely,

an open question how to determine those features. The main goal is to �nd a small number

of relatively predictive features rather than very large number of features that, taken in

the proper but untractably complex combination, are entirely predictive of the class label.

Irrelevant and redundant features cause problems by adding noise to the learning algorithm

and therefore obscuring the distributions of the small set of truly relevant features for the

task at hand. Two purposes are served by reducing the set of features considered by an

algorithm: �rst, from a purely computational viewpoint, we can considerably decrease the

running time of the induction algorithm; second, and more importantly, the accuracy of the

increasing model is increased ([126],[111]).
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Psychological Basis

The cognitive architecture that inspired GOMS techniques is the so called Model Human

Processor (MHP) [41]. According to the Model Human Processor, representation of human

cognition consists of separate components for cognitive, motor, and perceptual processors

(and associated bu�ers), as well as for long and short-term memory. The components of

GOMS map onto this model in one form or another. For instance, control in the MHP is

central to the cognitive processor, where execution of methods and selection rules is assumed

to take place. Likewise, the execution of operators can be seen as the issuance of commands

by the cognitive processor to the other components. The two-layer model proposed in this

thesis (see �gure 1-3) includes perceptual, cognitive and motor modules: cameras and other

sensors, together with computer vision and signal processing modules at the perceptual

level; active control system for a camera at the control level; and dynamic graphical models

or Dynamic Probabilistic Networks (DynPINs) at the cognitive level.

Uses of GOMS

From a research standpoint, GOMS provides a framework for modeling aspects of human

performance and cognition. From an applied perspective, GOMS provides a rich set of

techniques for evaluating human performance on any system where people interact with

machines. GOMS analysis can provide much insight into an system's usability, such as,

task execution time, task learning time, operator sequencing, functional coverage, func-

tional consistency, and aspects of error tolerance. Some type of GOMS analysis can be

conducted at almost any stage of system development, from design and allocation of func-

tion to prototype design, detailed design, and training and documentation for operation

and maintenance. Such analysis is possible for both new designs and redesigns of existing

systems.

Varieties of GOMS

Card [41] de�ned a su�ciently broad framework for GOMS that allows room for multiple

analysis and modeling techniques at many di�erent levels. Of the many such techniques

they proposed and that others have proposed since, several are in currently in common use:

(1) Keystroke Level Model (KLM) The simplest GOMS technique is the Keystroke
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Level Model (KLM) ([41]). It deals mainly with observable events and is organized as

a single stream of sequential operators. KLM is easy to learn and can quickly provide

crude task-execution times. (2) Card, Moran, and Newell GOMS (CMN-GOMS)

Also from the original Card, Moran, and Newell proposal, CMN-GOMS added hierarchical

structure to KLM. Tasks are organized as a series of goals and subgoals and operators

are organized into subroutines called methods. CMN-GOMS can provide task execution

times and a�ords a better view of the task structure. (3) Natural GOMS Language

(NGOMSL) NGOMSL ([123]) was developed as a formally de�ned version of CMN-GOMS

based on cognitive complexity theory (CCT). It has a more structured hierarchy than CMN-

GOMS and a well-de�ned analysis methodology for developing models. In addition to the

execution time and task structure information provided by CMN-GOMS, its CCT roots

allow for learning time predictions, as well. (4) Cognitive Perceptual Motor GOMS

(CPM-GOMS) CPM-GOMS ([110]) is also based on CMN-GOMS with an emphasis on

parallel activities. Where other GOMS techniques assume that humans do one thing at

a time, CPM-GOMS assumes as many operations as possible will happen at any given

time subject to constraints of the cognitive, perceptual, and motor processes. Models are

developed using PERT charts and execution time is derived from the critical path. In one

application to manuscript editing, they traced user actions with GOMS model predictions

and observed sequences with a sequence- distance metric. Their work stressed the need to

utilize quantitative measures of a trace's goodness of �t along with traditional quantitative

analyses. The models proposed in this thesis also provide such quantitative metrics.

Among other e�orts to carry highlight the signi�cant methodological contributions of

Newell's et al work, I would emphasize Ohlsson's ([169]) trace analysis. He has formalized

Newell's et al methodology as a three-step process: (1) subject's problem space identi�cation

and construction; (2) subject's solution path identi�cation by making use of the sequential

information in the protocol; (3) subject's strategy hypothesis by inventing problem-solving

heuristics that can reproduce the subject's solution path. The formulation proposed in

this thesis, via dynamic graphical models provides a mathematically sound framework for

carrying out the three previous steps: (1) the problem space is determined by the model:

the graph structure, the selected features, etc, (2) the solution path is given by well-de�ned

inference and MAP estimation algorithms de�ned over the graph, (3) and the subject's

solution path is reproduced by the models, given that they are generative and learnt from
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real data.

2.2.2 Soar

Ritter ([206]) examined tracing at length and speci�ed a methodology, trace-based analysis,

for testing process models' predictions through comparison with verbal and non-verbal

protocols. His formulation of trace-based protocol analysis, reminiscent of Ohlsson's trace

analysis, comprised the following steps: (1) using a process model, generate a sequence

of predicted actions; (2) compare the model predictions to empirical data by forming a

mapping between the predicted action sequence and the observed action sequence; (3)

analyze the �t of the model to the data to see where the model can be improved; (4)

re�ne the model and iterate. There is great overlap between this methodology and the

machine learning framework used in this thesis. The main di�erence is that the behavior

models in this thesis are automatically learned from data, whereas Ritter's models are

manually de�ned and revised. In the proposed learning framework, the previous steps are

automatically included in the training procedure, where the models parameter estimation

is performed in terms of maximizing the likelihood of the data given the model.

Soar is an architecture for human cognition expressed in the form of a production system.

It involves the collaboration of a number of researchers including Allen Newell, John Laird

and Paul Rosenbloom and others at di�erent institutions. The theory builds upon earlier

e�orts involving Newell such as GPS ([165]) and GOMS ([41]). Like the latter model, Soar

is capable of simulating actual responses and response times.

Using their Soar/MT system, Ritter and Larkin ([207]) have successfully developed a

process model for users of a computer interface. The predictions of the cognitive model in

Soar/MT require that the model's sequence of predicted actions be deterministic, whereas

the human behavior recognition methods developed in this thesis allow for non-deterministic

action traces using a statistical framework.

The principal element in Soar is the idea of a problem space: all cognitive acts are some

form of search task. Memory is unitary and procedural; there is no distinction between

procedural and declarative memory. Chunking is the primary mechanism for learning and

represents the conversion of problem-solving acts into long-term memory. Soar exhibits a

variety of di�erent types or levels of learning: operators (e.g., create, call), search control

(e.g., operator selection, plans), declarative data (e.g., recognition/recall), and tasks (e.g.,
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identify problem spaces, initial/goal states). Soar is capable of transfer within or across

trials or tasks.

Scope/Application: Newell ([166]) has positioned Soar as the basis for a uni�ed theory of

cognition and attempts to show how it explains a wide range of past results and phenomena.

For example, he provides interpretations for response time data, verbal learning tasks,

reasoning tasks, mental models and skill acquisition. In addition, versions of Soar have

been developed that perform as intelligent systems for con�guring computer systems and

formulating algorithms.

2.2.3 Automated and Semi-automated Analysis

Even thought the tracing protocols presented so far constitute a milestone towards the ex-

planation and modeling of human behavior and task performance, they are manual: their

de�nition, implementation and practical operation are full responsibility of the researcher,

being, thus, extremely tedious. In consequence, several researchers have attempted to auto-

mate the process. For instance, Waterman and Newell ([257]) developed PAS-II, a system

for the automated analysis of verbal reports. PAS-II mapped subjects' verbal protocols onto

a problem behavior graph, which describes the trajectory of a subject's solution through

a problem space. PAS-II allowed the user to interactively take part in the analysis: the

user 'can provide answers to subproblems the system is unable to solve, correct processing

errors, and even maintain control over the processing sequence' ([257]).

Although PAS-II and other similar systems represented a signi�cant attempt at au-

tomating protocol analysis, the systems, as the authors themselves admit, constitute only

one component task of the larger picture of protocol analysis.

In another attempt to automate tracing, Smith et al. ([224]) employed cognitive gram-

mars to represent cognitive strategies and parse verbal, keystroke, video and action proto-

cols. Using a cognitive theory of writing, they implemented three types of cognitive gram-

mars for an expository writing task: a production rule grammar, an augmented transition

network, and an episode grammar. All three grammars could successfully parse subject

protocols into a parse tree of higher-order cognitive actions, symbolizing the model's inter-

pretation of the observed behavior. One of the most important drawbacks of such methods

is that the parsing must be complete and exact, with no allowance for deviations from
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the predicted model sequences. Real data, however, it's generally too noisy for such in-

terpretation. The process of recognizing real human behavior, gathered by noisy sensors

in real situations, must incorporate robust methods that tolerate noise and unexpected or

unpredicted actions. As it is described in chapter 4, the behavior models proposed in this

thesis, by means of dynamic graphical models, o�er a mathematically sound framework for

incorporating uncertainty, noise and missing data.

Automated tracing has been successfully employed in intelligent tutoring systems. For

instance, Anderson et al. ([7]) describe how model tracing can map student actions in a

tutoring system to the predictions of an ACT-R cognitive model. Model tracing in such

systems assumes that each student actions corresponds to a unique problem-solving strategy

and cannot backtrack in the case of ambiguous actions. It is also limited to the analysis of

non-noisy actions such as key presses or mouse clicks.

Several other researchers have investigated automated and semi-automated techniques

that do not implement tracing per se but do highlight common goals to the above work

and this thesis. Lallement ([132]) used decision trees to classify data from an air-tra�c

controller task. His work showed that such machine learning techniques can provide au-

tomated analysis that is more consistent and faster than analysis by hand. Sanderson et

al's ([215]) MacSHAPA system allows for sequential protocol analysis, including sequence

comparisons, Fisher cycles, Markov transition statistics, and lag sequential analysis.

Cognitive Process Models

One of the requirements of tracing techniques is a cognitive process model that can generate

predicted action sequences to be matched up against observed action protocols. There are

a number of modeling systems that allow for such models, including ACT-R ([8]), Soar

([166]), EPIC ([124]), GOMS ([41]), and E-Z Reader ([204]).

Limited e�ort has been invested into �nding automated methods of generating appro-

priate process models for a task domain ([134], [75]). For a given problem space, these

systems infer the conditions under which operators can apply using positive and negative

training examples. While the systems do address part of the modeling problem, they still

require full speci�cation of the problem space (composed of representation and operators),

which in itself is a major component of the modeling process. However such e�orts suggest

that the future of automated modeling seems promising. This thesis contributes in this area
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by proposing and testing with non-simulated data a model of human behavior recognition

and prediction. The proposed model is generative, predictive and automatically learnt from

data.

2.2.4 Functionalism and the Theory of Mind

In the cognitive scienti�c as well as the philosophical community, one of the most popular

account of people's understanding of mental-state language is the "theory of mind" theory,

according to which naive speakers, even children, have a theory of mental states and un-

derstand mental words solely in terms of that theory. The most precise statement of this

position is the philosophical doctrine of functionalism. Functionalism says that the crucial

or de�ning feature of any type of mental state is the set of causal relations it bears to

(1) environmental or proximal inputs, (2) other types of mental states, and (3) behavioral

outputs. The term "functionalism" is broad enough to incorporate a very rich spectrum of

di�erent doctrines. In particular, there is what is called scienti�c functionalism (psycho-

functionalism, in Block's terms [23]), according to which it is a scienti�c fact that mental

states are functional states. That is, mental states have functional properties (i.e., causal

relations to inputs, other mental states, and outputs) and should be studied in terms of

their functional properties. It seems clear that mental states have functional properties;

and therefore mental states should be studied (at least in part) in terms of these properties.

But this doctrine does not entail that ordinary people understand or represent mental words

as designating functional properties only. Another variation of functionalism is representa-

tional functionalism, or RF, where the focus is the psychological realization of analytic or

commonsense functionalism. It is in contrast to a more abstract traditional philosophical

approach. In RF, one considers it as a psychological hypothesis, i.e., a hypothesis about

how the cognitive system represents mental words. This form of functionalism is interpreted

as hypothesizing that the cognitive representation associated with each mental predicate

M represents a distinctive set of functional properties, or functional role, FM . The doc-

trine holds that folk wisdom embodies a theory, or a set of generalizations, which articulate

an elaborate network of relations of three kinds: (A) relations between distal or proximal

stimuli (inputs) and internal states, (B) relations between internal states and other internal

states, and (C) relations between internal states and items of overt behavior (outputs). Here

is a sample of such laws due to Churchland ([45]). Under heading (A) (relations between
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inputs and internal states) we might have 1:

'When the body is damaged, a feeling of pain tends to occur at the point of damage.

When no 
uids are imbibed for some time, one tends to feel thirsty. When a red apple

is present in daylight (and one is looking at it attentively), one will have a red visual

experience'.

Under heading (B) (relations between internal states and other internal states) we might

have:

'Feelings of pain tend to be followed by desires to relieve that pain. Feelings of thirst

tend to be followed by desires for potable 
uids. If one believes that P, where P elementarily

entails Q, one also tends to believe that Q'.

Under heading (C) (relations between internal states and outputs) we might have:

'Sudden sharp pains tend to produce wincing. States of anger tend to produce frowning.

An intention to curl one's �nger tends to produce the curling of one's �nger'.

According to RF, each mental predicate picks out a state with a distinctive collection,

or syndrome, of relations of types (A), (B) and/or (C)). The term pain, for example, picks

out a state which tends to be caused by bodily damage, tends to produce a desire to get

rid of that state, and tends to produce wincing, groaning, etc. The content of each mental

predicate is given by its unique set of relations, or functional role, and nothing else. In

other words, RF attributes to people a purely relational concept of mental states.

There are slight variations and important additional nuances in the formulations of func-

tionalism. Some formulations, for example, talk about the causal relations among stimulus

inputs, internal states, and behavioral outputs. Others merely talk about transitional re-

lations, i.e., one state following another. The dynamic graphical models used in this thesis

(HMMs and CHMMs) o�er a formal framework for representing both causal relations {via

the graph structure{ and the transitional relations {via the transition probability matrices

between adjacents states{ (see chapter 4).

One important problem of RF concerns how a subject can determine which functional

type a given state-token instantiates. There is a clear threat of combinatorial explosion:

too many other internal states will have to be type-identi�ed in order to identify the target

state. This problem is not easily quanti�ed with precision, because we lack an explicitly

formulated and complete functional theory, so we don't know howmany other internal states

1From [43]
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are directly or indirectly invoked by any single functional role. The problem is particularly

acute, because under standard formulations of functionalism, beliefs, desires and other

propositional attitudes have strong holistic properties. A given belief may causally interact

with quite a large number of other belief tokens and desire tokens. To type-identify that

belief, it looks as if the subject must track its relations to each of these other internal states,

their relations to further internal states, and so on until each path terminates in an input

or an output. The combinatorial explosion of possible relations and interactions makes

the system untractable. For each desire or goal-state there are inde�nitely many beliefs

with which it could combine to produce a further desire or subgoal. Similarly, for each

belief there are in�nitely many possible desires with which it could combine to produce a

further desire or subgoal, and in�nitely many other beliefs with which it could combine to

produce a further belief. If the type-identi�cation of a target state depends on tracking all

of these relations until inputs and outputs are reached, clearly it is unmanageably complex.

At a minimum, we can see this as a challenge to an RF theorist, a challenge which no

functionalist has tried to meet, and one which looks pretty forbidding. Here the possibility

of partial matching may assist the RF theorist to account for mental-state classi�cation.

There are two crucial features of a functionalist viewpoint that are relevant to Perceptual

Intelligence. The �rst feature is pure relationalism. RF claims that the way subjects

represent mental predicates is by relations to inputs, outputs, and other internal states. The

other internal-state concepts are similarly represented. Thus, every internal-state concept

is ultimately tied to external inputs and outputs. Perception plays, therefore, a crucial role

and is tightly coupled to internal representations. What is deliberately excluded from our

understanding of mental predicates, according to RF, is any reference to the phenomenology

or experiential aspects of mental events (unless these can be expressed in relationalist terms).

No intrinsic character of mental states are appealed to by RF in explaining the subject's

basic conception or understanding of mental predicates. The second crucial feature of RF

is the appeal to nomological (lawlike) generalizations in providing the links between each

mental-state concept and suitably chosen inputs, outputs, and other mental states. Thus,

if subjects are to exemplify RF, they must mentally represent laws of the appropriate sort.

How are these laws acquired? Are they learned? Does empirical research on "theory of

mind" support either of these two crucial features? The answer is unknown, because, at

the moment, very few of the leading researchers in these topics, if any, construe a "theory
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of mind" in quite the sense speci�ed here. They usually endorse vaguer and weaker views.

2.2.5 State-based Models of human Behavior

I have presented so far classical and relational functionalism, where mental states are func-

tional states. Putnam {a classical functionalist{ has argued that computational functional-

ism cannot serve as a foundation for the study of the mind, as every ordinary open physical

system implements every �nite-state automaton. Chalmers [44], [43] argues, on the other

hand, that Putnam's argument fails, but that it points out the need for a better understand-

ing of the bridge between the theory of computation and the theory of physical systems. It

also raises questions about the classes of automata that can serve as a basis for understand-

ing the mind. Chalmers develops an account of implementation, linked to an appropriate

class of automata, such that the requirement that a system implements a given automaton

places a very strong constraint on the system. This clears the way for computation to play a

central role in the analysis of mind. These theories are directly relevant to this thesis work:

all the models developed in this thesis are stochastic state-based computational models, as

opposed to deterministic �nite state automata.

According to Chalmers [44], [43] 'it is su�cient to require that a system reliably transits

through a sequence of states s1; s2; :::; irrespective of environmental conditions. This is

not a di�cult requirement: most clocks satisfy it, for instance. Probably most physical

systems satisfy such a requirement; perhaps we might �nd reliable sequences like this in

patterns of radiation decay. In any case, let us say a physical system contains a clock if it

has a subsystem that reliably transits through a sequence like this. A system containing

a clock will circumvent the �rst objection. If we de�ne the states s1; s2; ::: of the system

as those states containing the relevant states of the clock, then the transition from sn to

sn+1 will be reliable. If disjunctive states a, b, and so on are de�ned appropriately, then

the transitions between these will satisfy the appropriate strong conditionals. Moreover we

need to make sure that the system has su�cient extra states to map onto formal states

that are not manifested on a given run'. Chalmers claims that we can do this by ensuring

that the system contains a dial: that is, a subsystem with an arbitrary number of di�erent

states, such that when it is put into one of those states it stays in that state.

In particular, to put stronger constraints on structure Chalmers argues that one needs

to move to Finite State Automata (FSAs) with inputs and perhaps with outputs. The
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addition of input changes the formalism from trivial to non-trivial. Where there is input,

there can be branching behavior. A formal state can be succeeded by various di�erent formal

states, depending on the input. Furthermore, the presence of input gives the formalism a

kind of combinatorial structure. Later states depend not just on a single state, but on a

combination of state and input. Once more, perception and cognition are tightly coupled,

as in the two-layer computational model proposed in this thesis, where "perception" lies at

the bottom and "cognition" lies at the top.

This formalism is much more appropriate for capturing the dynamics of cognitive sys-

tems. Humans do not have a single path of states along which their lives are determined.

Even if they do, as some fatalistic views might suggest, this path does not exhaust their

description. For any given sequence of states that a human goes through, there is always

the case that if things in the world had gone slightly di�erently, they would have functioned

in an interestingly di�erent way. Omitting this potentiality leaves out a vital part of the

description of human functioning. A wind-up toy or perhaps a videotape of my life could

go through the same sequence of states, but it would not be a cognitive system. Cogni-

tion requires at least the possibility of functioning in more than one way. A statistical,

non-deterministic approach seems therefore appropriate, as the one taken in this thesis.

Even simple FSAs with inputs and outputs are not a rich enough model to capture

the kind of complex structure that computation and cognition involve. The trouble is

that the internal states of these FSAs are monadic, lacking any internal structure, whereas

the internal states of most computational and cognitive systems have all sorts of complex

structure. Generally these states are divisible into components which interact locally and

globally according to complex principles. Just as the structure of the system is not captured

by a monadic state description, neither are the state-transitions captured by a monadic

state-change. There may be all sorts of local dependencies that go into the functioning of

such a system. Thus a hierarchical architecture, as the one presented in �gure 1-3, seems

the most appropriate.

Chalmers claims that often the state-transitions of a FSA will be de�ned in terms of

local dependencies, as when a substate depends only on a few neighboring substates and

perhaps on a few inputs rather than on the entire previous state and input vectors (this

will be so for cellular automata and Turing machines, for instance). In this case, we can

require that the appropriate restricted conditional holds: that is, if the physical system is
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in the (few) speci�ed previous substates and receiving the speci�ed inputs, this causes it

to transit appropriately. We are therefore requiring a Markov condition in the system's

dynamic behavior. Once more the connection to this thesis work is very direct, for the

models developed in this thesis are all �rst order Markov models.

In summary, the model proposed in this thesis captures the input-output nature pro-

posed by Chalmers. The perceptual system gathers contextual, multimodal input data

(video, audio, car signals) and processes it. The machine learning modules implemented

by use of dynamic graphical models (HMMs and CHMMs) model the internal dynamics of

the system in a probabilistic, statistically driven manner. The �rst order Markov condition

of the models formalizes the fact that the entire history of the system is represented and

summarized by the previous state. Of course, this is a strong assumption in the system's

dynamics. Higher order Markov chains might be necessary for capturing longer term causal

relationships.

To which degree can a computational framework model the complexity of human be-

havior? Isn't it, perhaps, a pretentious aspiration of computer scientists? The theory of

computation is often thought to underwrite the theory of mind. In cognitive science, it is

widely believed that intelligent behavior is enabled by the fact that the mind or the brain

implements some abstract automaton: perhaps a Turing machine, a program, an abstract

neural network, or a �nite-state automaton. From a formal viewpoint, the ambitions of

arti�cial intelligence rest on a related claim of computational su�ciency, holding that there

is a class of automata such that any implementation of an automaton in that class will

possess a mind. A similar claim is often made about many speci�c mental properties, in-

cluding properties characteristic of human mentality: that is, it is claimed that there exists

a class of automata such that any implementation of an automaton in that class will have

the mental property in question. In this way, it is hoped that computation will provide a

powerful formalism for the replication and explanation of mentality.

In the case of this thesis, there is a well-motivated formalism, graphical models, and

an associated implementation, a particular graphical structure, parameters and inference

algorithms, in order to model (recognize and predict) some real-life behavior. Of course,

it is critical that the proposed architecture have enough expressive power to capture the

intrinsic properties of the real-life situation, i.e. the conditional independencies encoded in

the graph structure should mirror as closely as possible the causal organization of the real
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system being modeled. In this way, a bridge would be established between the computational

theories and the physical systems of everyday life. This school of thought opens the way to

a computational foundation for the theory of mind.

Note that this only accounts for half of the problem. Moreover, for the easy half. The

harder part is to take advantage of this bridge, showing that the physical properties that a

computational description formalizes are the properties in virtue of which minds arise. It is

not implausible that minds arise in virtue of causal organization, but neither is it obvious.

It is also plausible but not obvious that a speci�c graph structure can capture the precise

causal organization (perhaps continuous, perhaps even non-computable) on which mentality

depends.

2.2.6 Dynamicist Theory of Cognition

Traditionally there have been two opposed theories of cognition: (1) The cognitive, computa-

tional hypothesis and (2) the more empirical connectionist approach. The former is inspired

in Thomas Hobbes'es ([95]) model of the mechanisms of mental operation. According to

Hobbes, perhaps thought is nothing but symbolic computation, the rule-governed manipula-

tion of symbols inside the head. Seventeenth-century speculation became twentieth-century

science. Hobbes'es idea evolved into the computational hypothesis, according to which cog-

nitive agents are basically digital computers. Perhaps the most famous rendition is Newell

and Simon's ([165]) doctrine that 'A physical symbol system has the necessary and su�cient

means for general intelligent action.' They proposed this hypothesis as a law of qualitative

structure, comparable to the cell doctrine in biology or plate tectonics in geology. It ex-

presses the central insight of the research paradigm which has dominated cognitive science

for some forty years.

However, and specially in recent years, the empirical {Humean{ alternative has been

gaining momentum. One of the most notable developments has been the rise of connection-

ism, which models cognition as the behavior of dynamical systems ([225]), and often un-

derstands those models from a dynamical perspective. Equally signi�cant is the emergence

of cognitive neuroscience, and within it, the increasing prevalence of dynamical theorising.

Dynamics forms the general framework for growing amounts of work in psychophysics, per-

ception, motor control, developmental psychology, cognitive psychology, situated robotics

and autonomous agents research, arti�cial intelligence, and social psychology. It is central
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to a number of general approaches, such as ecological psychology, synergetics, and morpho-

dynamics.

Since the emergence of connectionism in the 1980s, connectionism and symbolicism have

been the two main paradigms of cognitive science ([18]). However, in recent years, a new

approach to the study of cognition has challenged their dominance; that new approach is

called dynamicism. There have been a series of papers and books [242], [248] that have

advanced the claim that cognition is not best understood as symbolic manipulation or

connectionist processing, but rather as complex, dynamical interactions of a cognitive agent

with its environment. The dynamicist approach to cognitive modeling employs concepts

developed in the mathematical �eld of dynamical systems theory. They claim that cognitive

models should be embedded, low-dimensional, complex, described by coupled di�erential

equations, and non-representational. Dynamicists have criticized both symbolicism and

connectionism and have decided to dismiss these theories of cognition and instead wish

to propose a 'radical departure from current cognitive theory', one in which 'there are no

structures', as opposed to connectionist approaches, and 'there are no rules' ([242]), as

opposed to symbolicist approaches. This new conception of cognitive functioning is intended

to replace the currently dominant theories of connectionism and symbolicism. In summary,

the dynamical hypothesis is the unifying essence of dynamical approaches to cognition. It

is encapsulated in the simple premise that cognitive agents are dynamical systems.

Through their discussion of the dynamicist hypothesis, dynamicists identify those cer-

tain kinds of dynamical systems which are suitable to describing cognition. Speci�cally,

they are: 'state-determined systems whose behavior is governed by di�erential equations...

Dynamical systems in this strict sense always have variables that are evolving continuously

and simultaneously and which at any point in time are mutually determining each other's

evolution' ([248]) { in other words, systems governed by coupled nonlinear di�erential equa-

tions. Thus the dynamicist hypothesis has determined that a dynamicist model must have a

number of component behaviors, they must be: deterministic; generally complex; described

with respect to the independent variable of time; of low dimensionality; and intimately

linked ([248]).

Some of the key features that dynamic graphical models share with the dynamicist ap-

proach are: they focus on the dynamic aspects of systems; they decompose a system in

terms of their variables and the states they can be in; they are computational and quan-
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titative in space, time, or both; they deal with dimensionality reduction and parameter

estimation. However, they di�er also in some crucial points: the models proposed in this

thesis are stochastic, statistical, data-driven models versus the deterministic nature of dy-

namical systems theory; they have a well de�ned structure that captures the causal relations

of the variables, versus the lack of structure of dynamical systems; the systems dynamics

is modeled by transition probabilities and not by di�erential equations as in the dynam-

ical approach; they treat time discretely whereas dynamical systems theory was designed

to describe continuous temporal behaviors. I will present in more detail the dynamicists

viewpoint to better understand the similarities and di�erences between dynamical systems

and dynamic graphical models.

Dynamical Systems Theory

The branch of mathematics called dynamical systems theory describes the natural world

with essentially geometrical concepts. Concepts commonly employed by dynamicists in-

clude: state space, path or trajectory, topology, and attractor. The state space of a system

is simply the space de�ned by the set of all possible states that the system could ever pass

through. A trajectory plots a particular succession of states through the state space and

is commonly equated with the behavior of the system. The topology of the state space

describes the "attractive" properties of all points of the state space. Finally, an attractor

is a point or path in the state space towards which the trajectory will tend when in the

neighborhood of that attractor. Employing these concepts, dynamicists attempt to predict

the behavior of a cognitive system if they are given the set of governing equations (which

will de�ne the state space, topology and attractors) and a state on the trajectory. The fact

that dynamical systems theory employs a novel set of metaphors for thinking about cogni-

tion is paramount. These metaphors o�er a perspective on cognition that is instrumental in

understanding some of the problems of cognitive science. The dynamical hypothesis states

that cognitive agents are dynamical systems. This hypothesis has two major components.

The nature hypothesis: a claim about the nature of cognitive agents themselves; it speci-

�es what they are (i.e., dynamical systems); and the knowledge hypothesis: a claim about

cognitive science: namely, that we can and should understand cognition dynamically.

There are numerous practical and theoretical advantages of dynamical systems theory

descriptions of cognition. The most obvious advantage is that dynamical systems theory is a
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proven empirical theory, as opposed to purely theoretical symbolic approaches to cognition.

Thus, the di�erential equations used in formulating a description of a cognitive system

can be analyzed and (often) solved using known techniques. One result of having chosen

this mathematical basis for a description of cognition is that dynamicists are bound to a

deterministic view of cognition. The behavior modeling framework introduced in this thesis,

based on graphical models, is non deterministic, but probabilistic.

Another advantage is the disposition of dynamical descriptions to exhibit complex and

chaotic behavior. Dynamicists convincingly argue that human behavior, the target of their

dynamical description, is quite complex and in some instances chaotic ([247], [242]).

I will describe in the following some key concepts not only in the dynamicist framework,

but also in the framework of the dynamic graphical models (DynPINs) proposed in this

thesis.

Systems

Systems are here taken to be sets of interdependent variables. A variable is simply some

entity that can change, i.e., be in di�erent states at di�erent times. Variables are interde-

pendent when the way any one changes depends on others, and change in others depends

on it. The state of the system is simply the state or value of all its variables at a time; the

behavior of the system consists of transitions between states. In dynamic graphical models,

a system is composed of a graph structure and its parameters. The graph nodes are random

variables, some observed and some hidden. Their interdependencies are captured by the

graph structure, more speci�cally the absence of edges (links) between variables represents

conditional independence assumptions.

Often, change in a system depends on factors outside the system itself (e.g., the force

of gravity), referred to here as parameters. Sometimes, changes in a parameter depend in

turn on the system itself. For example, the position of the moon both depends upon, and

a�ects, the position of the planets. This kind of reciprocal, direct dependence is known

as coupling. System variables and coupled parameters can be regarded as forming a larger

system. This illustrates the semi-arbitrariness of systems. It is always up to us to nominate

a set of concrete variables as the system we will study. Reality determines whether that set

is in fact a system, and how it behaves.

All systems in the current sense change in time. In general, time is just some intrinsically
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ordered set, or order, serving to provide orderings over other things. The real time of

concrete systems is the set of instants at which things can actually happen, ordered by

temporal priority (before/after). Concrete events are paired with instants or periods of

time, and hence stand in temporal relations with each other. Abstract systems are not

situated in real time at all, and so must take some other set as their time set; usually, it

is the positive integers or the real numbers. The mathematical rule imposes orderings over

states of the system by pairing them with members of this set.

Roughly, systems are quantitative when there are distances in state or time, such that

these distances matter to behavior. This can be true in progressively deeper ways, giving

rise to progressively more substantial senses in which a system can count as dynamical.

Systems can be quantitative in state, time or the relationship of both:

1. Quantitative in state. First, there can be distances between any two overall states of

the system, such that the behavior of the system depends on these distances. More

precisely, a system is quantitative in state when there is a metric over the state set

such that behavior is systematically related to distances as measured by that metric.

Such systems will be governed by a rule compactly specifying this distance-dependent

change. For example, the transition matrices in a HMM or CHMM describe how the

system changes by telling us the probability of each state at time t+1 given the state

at time t, i.e. p(st+1jst). Standardly, the relevant quantitive properties of state sets

are derived from quantitive properties of the variables. Quantitive variables can be

either abstract or concrete.

2. Quantitative state/time interdependence. A system is quantitative in time when time

is a quantity, i.e., there is a metric over the time set, such that system behavior is

systematically related to distances as measured by that metric. At least in cognitive

science practice, systems that are quantitative in time are also quantitative in space,

and these properties are interdependent. That is, the behavior of the system is such

that amounts of change in state are systematically related to amounts of elapsed time.

Such systems are governed by a rule specifying a quantitative relationship between

change in state, elapsed time, and current state. In concrete systems, this rule captures

causal organization; that is, the system changes as it does because system variables

have the quantitative properties in terms of which the rule is expressed. When both
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state and time are quantitative, the system exhibits rates of change. Systems that are

interdependently quantitative in state and time are governed by rules specifying the

rate of change in terms of current state. Dynamic graphical models model the state

of random variables over time, where time is a discrete variable and the state is either

discrete or continuous. They are, therefore, quantitative in time and state.

3. Rate dependence. Third, some systems are such that their rates of change depend on

current rates of change. In these systems, variables include both basic variables and

the rates of change of those variables. Systems whose behavior is governed by rules

most compactly expressed as sets of higher-order di�erential equations are quantitative

in this sense. None of the human behavior models built in this thesis captures explicitly

rates of change in its variables.

In what follows, a system is taken to be dynamical to the extent that it is quantitative

in one of the above senses. At least three considerations support this approach. First, it

re
ects the actual practice of cognitive scientists in classifying systems as dynamical or not,

or as more or less dynamical. Second, it �ts comfortably with existing de�nitions. Third,

it is cast in terms of deep, theoretically signi�cant properties of systems. For example, a

system that is quantitative in state is one whose states form a space such that states are

positions in that space, and behaviors are paths or trajectories. Thus quantitative systems

support a geometric perspective on system behavior.

Dimensionality

In order to avoid the di�cult analyses of high-dimensional dynamical systems, dynamicists

have claimed that accurate descriptions of cognition are achievable with low-dimensional

descriptions. The aim of dynamicists is to 'provide a low-dimensional model that provides

a scienti�cally tractable description of the same qualitative dynamics as is exhibited by the

high-dimensional system (the brain)' ([247], p. 28).

The dimension of a dynamical systems model is simply equal to the number of param-

eters in the system of equations describing a model's behavior. Thus, a low dimensional

model has few parameters and a high dimensional model has many parameters. The di-

mensionality of a system refers to the size of its state space. Therefore, each axis in the

state space corresponds to the set of values a particular parameter can have.
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The low dimensionality of dynamicist systems is a feature which contrasts the dynami-

cist approach with that of the connectionists. By noting that certain dynamical systems can

capture very complex behavior with low dimensional descriptions, dynamicists have insisted

that complex cognitive behavior should be modeled via this property. Thus, dynamicists

avoid the di�cult analyses of high dimensional systems, necessary for understanding con-

nectionist systems. However, it also makes the choice of equations and variables very di�-

cult, because the most relevant, informative variables need to be chosen. From a Machine

Learning perspective, this problem is known as feature selection, where a small number of

relatively predictive features is prefered over a very large number of features that, taken in

the proper but untractably complex combination, are entirely predictive of the class label.

Irrelevant and redundant features cause problems by adding noise to the learning algorithm

and therefore obscuring the distributions of the small set of truly relevant features for the

task at hand. Two purposes are served by reducing the set of features considered by an

algorithm: �rst, from a purely computational viewpoint, we can considerably decrease the

running time of the induction algorithm; second, and more importantly, the accuracy of the

model is increased ([126],[111]).

Parameter Estimation

By adopting a purely dynamicist approach and thus necessitating the use of collective pa-

rameters, it becomes impossible to identify the underlying mechanisms that a�ect behavior.

In contrast, connectionism provides a reasonably simple unit (the neuron or node) to which

behavior can ultimately be referred. Similarly, symbolicism provides fundamental sym-

bols to which we can appeal. In both of these instances, understanding global behavior is

achieved through small steps, modeling progressively more complex behavior and allowing

a "backtrace" when necessary to explain a behavior. With dynamical equations, on the

other hand, no such progression can be made. The model is general to such an extent as

to lose its ability to explain from where the behaviors it is producing are coming, because

of its intrinsic lack of representation. The framework proposed in this thesis, via dynamic

graphical models, o�ers a compact way of encoding conditional dependencies between the

variables via the graph structure in as e�cient a manner as possible.
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Coupling

The linked, or coupled, nature of a system of equations implies that changes to one com-

ponent (most often re
ected by changes in a system variable) have an immediate e�ect on

other parts of the system. Thus, there is no representation passing between components

of such a system, rather the system is linked via the inclusion of the same parameter in

multiple equations. The ability of such systems of equations to model "cognitive" behaviors

has prompted theorists, like van Gelder, to insist that the systems being modeled similarly

have no need of representation ([247], [248]). In a way, "coupling" thus replaces the idea of

"representation passing" for dynamicists. A central contribution of this thesis is the explicit

incorporation of context in the dynamic graphical models through causal coupling and in-

teractions between several generative processes. Therefore, there is a clear representation

of what coupling means.

Embeddedness

Dynamicist systems also have a special relation with their environment in that they are

not easily distinguishable from their surroundings: 'In this vision, the cognitive system is

not just the encapsulated brain; rather, since the nervous system, body, and environment

are all constantly changing and simultaneously in
uencing each other, the true cognitive

system is a single uni�ed system embracing all three' ([248], p. 373). Since the environment

is also a dynamical system, and since it is a�ecting the cognitive system and the cognitive

system is a�ecting it, the environment and cognitive system are strongly coupled. Such

embeddedness of the cognitive system makes a precise distinction between the system and

the system's environment very di�cult { in other words, the system boundaries are obscure.

But this fact, dynamicists claim, is not only a good re
ection of how things really are, it is a

unique strength of the dynamicist approach ([248], p. 25). Coupling amongst not only the

equations describing a cognizing system, but also between those describing the environment

and those describing the system results in complex "total system" behaviors.

System Boundaries

An important distinction between dynamicism and either symbolicism or connectionism is

the dynamicists' unique view of representation; to be a truly dynamicist model, there should
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be no representation. In contrast, symbolicist models are fundamentally dependent on

symbolic representations, so clearly they are inadequate. Similarly, connectionists represent

concepts (via either distributed representation or local symbolic representation) in their

simpli�ed networks. But dynamicists decry the use of representation in cognitive models

([86], [242],[247]).

In the late 1950s there was extensive debate over the behaviorist contention that rep-

resentation had no place in understanding cognition. One of the best known refutations

of this position was given by Chomsky in his 1959 review of B. F. Skinner's book Verbal

Behavior. Subsequently, behaviorism fell out of favor as it was further shown that the

behaviorist approach was inadequate for explicating even basic animal learning ([241], p.

231). The reasons for the behaviorist failure was its fundamental rejection of representation

in natural cognitive agents.

Thus, it is not easy to convincingly deny that representation plays an important role in

cognition. It seems obvious that humans use representation in their dealings with the world

around them. For example, people seem to have the ability to rotate and examine objects

in their head. It seems they are manipulating a representation ([128], [129]). More striking

perhaps is the abundant use of auditory and visual symbols by humans everyday to commu-

nicate with one another. Exactly where these ever-present communicative representations

arise in the dynamicist approach is uncertain. It will evidently be a signi�cant challenge,

if not an impossibility, for dynamicists to give a full account of human cognition, without

naturally accounting for the representational aspects of thinking. Though dynamicists can

remind us of the impressive behaviors exhibited by Brooks' ([36]) dynamical robots, it is

improbable that the insect-like reactions of these sorts of systems will scale to the complex

interactions of mammalian cognition.

Time

Dynamical systems theory was designed to describe continuous temporal behaviors, thus

the dynamicist commitment to this theory provides for a natural account for behavioral

continuity. Though the question of whether or not all intelligent behavior is continuous or

discrete is a matter of great debate among psychologists ([152], [155]), dynamical systems

models possess the ability to describe both. So, relying on the assumption that behavior is

'pervaded by both continuities and discrete transitions' ([247], p. 14) as seems reasonable

52



[46], [61] dynamicism is in a very strong position to provide good cognitive models based

on its theoretical commitments.

One of the greatest strengths of the mathematics of dynamical systems theory is its in-

herent ability to e�ectively model complex temporal behavior. It is a unanimous judgement

among the paradigms that the temporal features of natural cognitive agents must be ade-

quately accounted for in a good cognitive model ([166], [46], [247]). Not only do dynamicists

address the temporal aspect of cognition, they make this aspect the most important. The

reasons for espousing this theoretical commitment are obvious: we humans exist in time;

we act in time; and we cognize in time { real time. Therefore, dynamical systems theory,

which has been applied successfully in other �elds to predict complex temporal behaviors,

should be applied to the complex temporal behavior of cognitive agents. Whether or not

we choose to subscribe to the dynamicist commitment to a particular type of dynamical

model, they convincingly argue that we cannot remove temporal considerations from our

models of cognition { natural cognition is indeed inherently temporal in nature.

Fundamentally, dynamicists believe that the other approaches to cognition 'leave time

out of the picture' ([247], p. 2). They view the brain as continually changing as it intersects

with information from its environment. There are no representations, rather there are

'state-space evolutions in certain kinds of non-computational dynamical systems' ([247], p.

1). The temporal nature of cognition does not rely on "clock ticks" or on the completion of

a particular task, rather it is captured by a continual evolution of interacting system parts

which are always reacting to, and interacting with the environment and each other. These

temporal properties can be captured with relatively simple sets of di�erential equations.

At the highest level, there are a number of general characteristics of a broadly dynamical

perspective on some natural phenomenon. The following stand out particularly strongly

when the subject is cognition and the contrast is with a computational approach, such as

the graphical models presented in this thesis:

1. Change versus state. Change and state are like two sides of one coin. Nevertheless,

theoretical perspectives can di�er in their primary emphasis or focus. Dynamicists are

interested, in the �rst instance, in how things change; states are the medium of change,

and have little intrinsic interest. Computationalists, by contrast, focus primarily on

states; change is just what takes you from one state to another. Dynamic graphical

models focus both on the states of the variable and on their changes over time, i.e.,
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the dynamics of the system, via the transition matrices.

2. Geometry versus structure. How are states of a system conceptualised? Computa-

tionalists focus on internal structure, and in particular on internal combinatorial or

syntactic structure - how basic pieces are combined to form structured wholes. Dy-

namicists, by contrast, understand a state geometrically, in terms of its position with

respect to other states and features of the system's dynamical landscape such as basins

of attraction. In other words, they focus on where the state is, rather than what it is

made up of.

3. Structure in time. Sophisticated cognition demands structural complexity in the cog-

nitive system. How is that structure implemented? Computationalists tend to think

of it as a static structure that it is all present at one time - and of cognition as simple

transformations of static structures. Dynamical Systems Theory suggests an alter-

native. Systems with simple states - perhaps just one variable - can behave in very

complex ways. This enables dynamicists to think of cognitive structure as laid out

temporally, much like speech as opposed to the written word. Cognition is then seen

as the simultaneous, mutually in
uencing unfolding of complex temporal structures.

4. Timing versus order. Dynamicists tend to be interested in how behaviors happen in

time, whereas computationalists are interested in what the behavior is, regardless of

timing details. Computationalists focus on which states the system passes through,

whereas dynamicists focus relatively more on when it passes through them.

5. Parallel versus serial. Dynamicists tend to think of systems as operating in parallel,

i.e., all aspects changing interdependently at the same time. Computationalists, by

contrast, tend to think of systems as serial: most variables remain unchanged in any

given state transition. For a dynamicist, change is standardly global; for a computa-

tionalist, change is standardly local. Dynamic graphical models exploit the modularity

of the graph structure to perform local calculations that ensure a globally consistent

representation of the overall probability distribution. Because of their modularity, the

inference and MAP estimation algorithms are parallelizable.

6. Ongoing versus Input/Output. Computationalists standardly think of a process as

starting with an input to the system. The task for the systems to produce an ap-
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propriate output, and it does so via a sequence of internal operations culminating in

the system halting with that output. Dynamicists, by contrast, think of processes as

always ongoing, not starting anywhere and not �nishing anywhere. The goal is not to

map an input at one time onto an output some later time, but to constantly maintain

appropriate change.

7. Interaction: state-setting or coupling? How does a cognitive system interact with

other things, such as the environment? Computationalists standardly think of in-

teraction as setting state; the system changes in its own way from that state, until

new input resets state again. Dynamicists recognize an alternative: interaction can

be a matter of parameters in
uencing the shape of change. Input is conceived as

an ongoing in
uence on their direction of change, and output as ongoing in
uence on

something else, just as radio set is continuously modi�ed by an incoming signal and at

the same times delivering its sound. Sometimes interaction is a matter of coupling two

systems simultaneously shaping each other's change. The coupled HMMs (CHMMs)

architecture proposed in this thesis is intented to capture causal interactions between

two generating processes.

8. Representations. Computationalists take representations to be static con�gurations

of symbol tokens. Dynamicists conceive representations very di�erently. They build

their representations using the basic entities of Dynamical Systems Theory, such as

parameter settings, system states, attractors, trajectories, or bifurcation structures

( e.g., [185]). Currently, most dynamicists make use of only the simplest models

possible, mostly due to computational limitations. As dynamical modeling increases

in mathematical sophistication, we can expect representations to take even more exotic

forms.

Unlike digital computers, dynamical systems are not inherently representational. A

small but in
uential contingent of dynamicists have found the notion of representation

to be dispensable or even a hindrance for their particular purposes. Dynamics forms

a powerful framework for developing models of cognition which side-step representa-

tion altogether. The assumption that cognition must involve representations is based

in part on inability to imagine how any non-representational system could possibly

exhibit cognitive performances. Within the dynamical approach, such systems can
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be not only imagined, they can be modeled and constructed (see, e.g., [20], [19], [71],

[263]).

Some objections

As any other theory of human cognition and behavior, the dynamical systems approach

su�ers from some important objections. Among them, we �nd:

1. Structure objection: One of the most important objections to the dynamical sys-

tems approach to cognition is known as the structure objection: 'Sophisticated cog-

nitive performances require complex internal structures. The dynamical approach

is taking a huge step backwards in trying to replace symbolic representations with

quantities. To explain high level cognition, dynamical systems will have to implement

computational mechanisms'.

Almost everyone now agrees that most kinds of cognitive performance can only be

explained by reference to complex structures internal to the system responsible for

those performances. Still, it remains an open question what form those structures

might take. Symbolic cognitive models advocate that they are the kind of structures

found in digital computers, i.e., symbol structures ([165]) or "classical" combinatorial

representations ([69]). Lying behind this idea is an assumption that the kinds of

complex structures required cannot exist in any system except by instantiating digital

symbol structures.

However, as dynamical cognitive science has matured, it has become apparent that

dynamical systems can incorporate combinatorial structures in various ways without

merely implementing their digital counterparts ([249]). For example, arbitrarily many

structures can be mapped onto states of a dynamical system, such that these states

can then be used as the basis of systematic processing (e.g., ([188])). Other work

has found combinatorial structure in the attractor basins of appropriate dynamical

systems ([168]), or in the trajectories induced by sequences of bifurcations ("attrac-

tor chaining", [247]). The possibilities have really only begun to be explored. The

dynamical approach is not vainly attempting to do without complex internal struc-

tures. Rather, it is in the process of dramatically reconceiving how they might be

instantiated.
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2. \The Not Cybernetics Again!" Objection: The dynamical approach has been

blamed for being just a new face of cybernetics. Cybernetics was famously de�ned

by Wiener, one of its creators, as 'the science of communication and control in man

and machine' but it soon developed into an even wider enterprise: a kind of general,

non-reductionistic study of systems, particularly self-sustaining systems in their en-

vironments see [178]. Throughout its brief ascendancy, cybernetics enthusiastically

embraced anything of conceivable relevance to complex systems, including informa-

tion theory, communication theory, automata theory, neurophysiology, systems theory,

game theory and control theory.

Dynamics was certainly a part of cybernetics, and the Dynamical Hypothesis is some-

times traced back to a leading cyberneticist, H. Ross Ashby. Still, the original cyber-

netics proposal implied little about the contemporary dynamical approach. Therefore

they di�er in fundamental ways. The Dynamical Hypothesis is, by comparison, tightly

de�ned. It is concerned with cognition speci�cally, rather than systems generally, and

is de�ned in terms of a core commitment to a single framework. The dynamical ap-

proach is not more closely connected to cybernetics than it does to other disciplines

with ancestral links to cybernetics, such as computational neuroscience and arti�cial

intelligence. Moreover, much more powerful tools are available today, such that the

bulk of Dynamical Systems Theory has been developed in the period since cybernetics.

3. The "Humans Compute" Objection: Humans can do arithmetic in their heads.

At least some cognitive activity is speci�cally digital computation. Therefore, the Dy-

namical Hypothesis cannot be the whole truth about cognition. If it is granted that

mental arithmetic and similar processes are, literally, digital symbol manipulation in-

side the head, then the Dynamical Hypothesis should indeed graciously concede. The

general truth of the Dynamical Hypothesis is compatible with certain special activities

counting as exceptions. However, we are also implicitly assuming that mental arith-

metic consists of symbol manipulation. Certainly, it seems like symbol manipulation:

numerals, lines, etc. are "seen in the mind's eye". It does not follow that there are

symbols in the head, i.e., that the states and processes that subserve such seeing ac-

tually instantiate symbols and their manipulations. Imagining the Ei�el Tower does

not entail that one has the Ei�el Tower, or even a picture of it, inside one's head
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([213], Ch.8). We must not confuse the content of experience with the mechanisms

implementing it. As usual, the question turns out to be the empirical one: in the long

run, what kind of models provide the best account ofhe mechanisms underlying the

relevant kind of cognitive performance?

The intuitive appeal of a dynamical systems theory description of many systems' behav-

iors is quite di�cult to resist. It seems to make sense to think of the behavior of cognitive

systems in terms of an "attraction" to a certain state (e.g. some people seem to be disposed

to being happy). However, can such metaphorical descriptions of complex systems actually

provide us with new insights, integrate previously unrelated facts, or in some other way

lead to a deeper understanding of these systems?

In science it is necessary to provide a model. By a model, I mean a precise description

of the properties of the system being modeled. The more important properties of the source

that are exactly demonstrated by the model, the better the model. di�erentiate between

model and analogy in science,

There is no real explanation provided by the psychological applications of dynamical

systems theory to the phenomenology or intentionality of cognition. These supposed models

do not provide new insights in clinical experimental psychology. They do not reveal any

details about what is being described (i.e. cognition). There are no consistent and explicit

mappings between dynamical systems theory and human behavior.

The human behavior models proposed in this thesis are statistical, generative and

learned from data. It would claim that it is possible to learn generative models (parameters

of) from data and to generate a model which produces data that seems appropriate. From

a strictly cognitive viewpoint, and since we have no explicit map between the concepts of

clinical psychology and those of dynamical systems theory, the data is meaningful only in

its mathematical context, not in a cognitive one.

Even in the most rigorous of dynamical models, and despite the application of nonlinear

di�erential equations in their model, there is very little empirical evidence, if any, about

how the model relates to cognition.

In sum, the concepts of dynamical systems theory provide an interesting method of

thinking about cognitive systems, but they have not yet been shown to be successfully

transferable to rigorous de�nitions of human behavior or cognition. The fuzziness of clinical

psychology does not allow for quanti�cation of mechanisms in dynamical systems theory
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terms. Furthermore, even some physiological processes do not seem to lend themselves

to precise quantitative dynamicist descriptions that are able to provide the predictive or

explanative powers expected of good models (c.f. [246]).

Critics may claim that a dynamical systems approach to cognition is simply not new

{ as early as 1970, Simon and Newell were discussing the dynamical aspects of cognition

([165]). In 1991, Giunti showed that the symbolicist Turing Machine is a dynamical system

([247]), so it could be concluded that there is nothing to gain from introducing a separate

dynamicist paradigm for studying cognition. However, Turing Machines and connectionist

networks have also been shown to be computationally equivalent yet these approaches are

vastly disparate in their methods, strengths, and philosophical commitments ([69], p. 10).

Similarly, though Turing Machines are dynamical in the strictest mathematical sense, they

are nonetheless serial and discrete. Hence, symbolicist models do not behave in the same

ideally coupled, dynamical and continuous manner as dynamicist systems are expected to.

Dynamicist systems can behave either continuously or discretely, whereas Turing Machines

are necessarily discrete. Furthermore, they are not linked in the same way to their envi-

ronment, and the types of processing and behavior exhibited is qualitatively di�erent. For

these reasons, dynamicists believe their approach will give rise to fundamentally superior

models of cognition. Biological evidence and the symbolicists' practical di�culties lend

support to many of the dynamicists criticisms ([166], [46], [247]).

2.3 Conclusions

In this chapter I have presented Psychological and Philosophical theories of human action,

and behavior. First, the frame problem has been introduced as one of the �rst explanations

of the organization of action; then several behavior theories have been described with special

emphasis in the way they formalize time and how do they relate to the statistical behavior

models proposed in this thesis (see chapter 4).

I have pointed out the major connections between the computational model proposed in

this thesis and the behavior theories proposed in Psychology and Philosophy. To summarize

them:

1. The Model Human Processor distinguishes three separate components in human cogni-

tion: cognitive, motor and perceptual processors. The computational model proposed
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in this thesis is a two-layer model (see �gure 1-3) that includes perceptual, cognitive

and motor modules: cameras and other sensors, together with computer vision and

signal processing modules at the perceptual level; active control system for a camera

at the control level; and dynamic graphical models or Dynamic Probabilistic Networks

(DynPINs) at the cognitive level.

2. The methodology derived from Newell's work has been formalized in three steps: (1)

subject's problem space identi�cation and construction; (2) subject's solution path

identi�cation by making use of the sequential information in the protocol; (3) subject's

strategy hypothesis by inventing problem-solving heuristics that can reproduce the

subject's solution path. Similarly, the formulation proposed in this thesis, via dynamic

graphical models provides a mathematically sound framework for carrying out the

three previous steps: (1) the problem space is determined by the model: the graph

structure, the selected features, etc, (2) the solution path is given by well-de�ned

inference and MAP estimation algorithms de�ned over the graph, (3) and the subject's

solution path is reproduced by the models, given that they are generative and learnt

from real data.

3. It has been acknowledged that most of the models proposed are very sensitive to noise,

missing data and variability among di�erent subjects. These problems are alleviated

by the proposed framework, because dynamic graphical models o�er a mathematically

sound framework for incorporating uncertainty, noise and missing data.

4. Some formulations of functionalism talk about the causal relations among stimulus

inputs, internal states, and behavioral outputs. Others merely talk about transitional

relations, i.e., one state following another. The dynamic graphical models used in this

thesis (HMMs and CHMMs) o�er a formal framework for representing both causal

relations {via the graph structure{ and the transitional relations {via the transition

probability matrices between adjacents states{ (see chapter 4).

5. There are many key features shared between the dynamicist approach to cognition and

the dynamic graphical models framework proposed in this thesis. Among them: both

of them focus on the dynamic aspects of systems; they decompose a system in terms

of their variables and the states they can be in; they are computational and quantita-

tive in space, time, or both; they deal with dimensionality reduction and parameter
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estimation. However, they di�er also in some crucial points: the models proposed

in this thesis are stochastic, statistical, data-driven models versus the deterministic

nature of dynamical systems theory; they have a well de�ned structure that captures

the causal relations of the variables, versus the lack of structure of dynamical systems;

the systems dynamics is modeled by transition probabilities and not by di�erential

equations as in the dynamical approach; they treat time discretely whereas dynamical

systems theory was designed to describe continuous temporal behaviors.

6. In the dynamicist approach, a model is general to such an extent as to lose its ability

to explain from where the behaviors it is producing are coming, because of its intrinsic

lack of representation. The framework proposed in this thesis, via dynamic graphi-

cal models, o�ers a compact way of encoding conditional dependencies between the

variables via the graph structure in as e�cient a manner as possible.

Most, if not all, of the previously described psychological and philosophical models are

manually built, relatively abstract, not directly learnt from human behaviors in real situa-

tions and not predictive. Finally there is a lack of rigorous mechanisms for evaluating the

performance of the models. As a consequence, there are very few systems able to perceive

and understand aspects of human behavior. The human behavior modeling framework pro-

posed in this thesis solves most of these problems: the model parameters are automatically

learnt from real data, collected in real situations. The models are generative, predictive,

and are validated according to their recognition accuracy on test data. With the proposed

framework I have built four systems that perceive and understand certain human behaviors.

Because of the generality of the proposed model, I would claim that many more systems in

other domains could be successfully built using it.
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Chapter 3

Perceptual Input

'Concepts without percepts are empty; percepts without concepts are blind'.

Kant

3.1 Introduction and Motivation

In chapter 1 I have presented the concept of Perceptual Intelligence, a new discipline which

brings together perception and cognition in the same framework. High-level perception {the

process of making sense of complex data at an abstract, conceptual level{ is fundamental

to human cognition. Prior to the twentieth century, theories of knowledge were inherently

perceptual. For over 2,000 years, theorists viewed higher cognition as inherently perceptual.

Since Aristotle (4th century BC) and Epicurus (4th century BC), theorists saw the repre-

sentations that underlie cognition as imagistic. For example, two hundred years ago, Kant

provocately suggested an intimate connection between perception and concepts. 'Concepts

without percepts', he wrote, 'are empty; percepts without concepts are blind'. After being

widely accepted for two millennia, this view withered with mentalism in the early twen-

tieth century. At that time, behaviorists and ordinary language philosophers successfully

banished mental states from consideration in much of the scienti�c community, arguing

that they were unscienti�c and led to confused views of human nature ([271]). Because

perceptual theories of mind had dominated mentalism to that point, attacks on mentalism

often included a critique of perception. As a result, perceptually-based theories of cognition

disappeared within the theories of cognition. Moreover, developments in logic, statistics,

and programming languages have inspired theories that rest on principles fundamentally
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di�erent from those underlying perception. Traditional research in Arti�cial Intelligence

has tried to model concepts while ignoring perception, even though high-level perceptual

processes lie at the heart of human cognitive abilites. Conversely, perception diverged from

cognition, focusing primarily on bottom-up sensory mechanisms and ignoring top-down

e�ects.

However, cognition cannot succeed without processes that build up appropriate repre-

sentations [17]. Cognition is inherently perceptual, sharing systems with perception at both

the cognitive and the neural levels. Much research in neuroscience has established that cat-

egorical knowledge is grounded in sensory-motor regions of the brain (for reviews see [52],

[1], in press). Damage to a particular sensory-motor region disrupts the conceptual process-

ing of categories that use this region to perceive physical exemplars. For example, damage

to the visual system disrupts the conceptual processing of categories whose exemplars are

primarily processed visually, such as birds. These �ndings strongly suggest that categorical

knowledge is not amodal {purely cognitive{. This in
uence is not unidirectional: cognition

does not become more perceptual while perception remains una�ected. Perception is not an

entirely modular system with cognition lying outside it. Because perception shares systems

with cognition, bottom-up activation of perceptual systems engages cognitive processes im-

mediately. Bottom-up information may dominate con
icting top-down information but fuse

with consistent top-down information.

According to [17] there are six core properties in any conceptual system: (1) perceptual

symbols are neural representations in sensory-motor areas of the brain; (2) they represent

schematic components of perceptual experience, not entire holistic experiences; (3) they

are multimodal, arising across the sensory modalities, proprioception, and introspection;

(4) related perceptual symbols become integrated into a simulator that produces limitless

simulations of a perceptual component (e.g., red, lift, hungry); (5) frames organize the

perceptual symbols within a simulator, and (6) words associated with simulators provide

linguistic control over the construction of simulations.

Conceptual processes should, thus, be studied in conjunction with the perceptual sub-

strate on which they rest, and with which they are tightly coupled. On the other hand,

our perception of any given situation is guided by constant top-down in
uence from the

conceptual level. Without this conceptual in
uence, the representations that result from

such perception will be rigid, in
exible, and unable to adapt to the problems provided by
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many di�erent contexts. The 
exibility of human perception derives from constant interac-

tion with the conceptual level. I would argue that perceptual processes cannot be separated

from other cognitive processes even in principle, and therefore traditional AI models cannot

be defended by supposing the existence of a "representation module" that supplies repre-

sentations ready-made. Recognizing the centrality of perceptual processes makes AI more

di�cult, but much more interesting. Integrating perceptual processes into a cognitive model

leads to 
exible representations, and 
exible representations lead to 
exible actions. This

is precisely the goal at the heart of Perceptual Intelligence.

Fortunately, there are today research e�orts towards developing perceptual theories of

cognition in psychology, philosophy, cognitive sciences, arti�cial intelligence, and linguistics

([211],[195],[151], [133], [105], [84], [47], [17], [14]). The computational model of human be-

havior developed in this thesis re
ects the connection between perception and cognition, as

depicted in �gure 1-3. In each system, the cognitive modules (behavior models) are statis-

tically learnt from observed data through the perceptual modules. The behavior modeling

framework is presented in chapter 4. In this chapter, I will describe in detail the perceptual

aspects of each of the testbeds developed in the thesis. In the context of the proposed

model, this chapter deals with the bottom-most layer of the model, as it appears boxed in

�gure 3-1.

Depending on the domain, di�erent perceptual input modalities have been used: (1) In

the case of facial expression recognition, an active camera looking at the user's face; (2) in

the framework of pedestrian interactions recognition, a static camera with wide �eld-of-view

watching a dynamic outdoor scene; (3) in the driver domain, multiple sensors of di�erent

nature are used: internal sensors of the car's internal state {acceleration, steering wheel

angle, gear, speed and break pedal action{, and cameras for the visual context {front and

rear tra�c, driver's face and gaze, and driver's viewpoint.

3.2 Visual Input and Representation of Visual Data

First, I will proceed to explain the computer vision processing involved in LAFTER and in

the pedestrian surveillance system.
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Figure 3-1: The perceptual system occupies the lowest level in the proposed model

Blobs: A Probabilistic Representation

The notion of \blobs" as a representation for image features has a long history in computer

vision [181, 122, 24, 272], and has had many di�erent mathematical de�nitions. In the

usage of this thesis work it is a compact set of pixels that share a visual property that is

not shared by the surrounding pixels. This property could be color, texture, brightness,

motion, shading, a combination of these, or any other salient spatio-temporal property

derived from the signal (the image sequence). In this thesis blobs are a coarse, locally-

adaptive encoding of the images' spatial and color/texture/motion/etc. properties. A prime

motivation for the interest in blob representations is the discovery that they can be reliably

detected and tracked even in complex, dynamic scenes, and that they can be extracted in

real-time without the need for special purpose hardware. These properties are particularly

important in applications that require tracking people, and recently they have been used in

2-D blob tracking for real-time whole-body human interfaces [272] and real-time recognition

of American Sign Language hand gestures [232].

One can represent shapes in both 2-D and 3-D by their low-order statistics. Clusters

of 2-D points have 2-D spatial means and covariance matrices, which will be denoted by �q

and Cq. The blob spatial statistics are described in terms of their second-order properties.
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For computational convenience it will be interpreted as a Gaussian model. The Gaussian

interpretation is not terribly signi�cant, because I also keep a pixel-by-pixel support map

showing the actual occupancy.

Like other representations used in computer vision and signal analysis, including su-

perquadrics, modal analysis, and eigen-representations, blobs represent the global aspects

of the shape and can be augmented with higher-order statistics to attain more detail if

the data supports it. The reduction of degrees of freedom from individual pixels to blob

parameters is a form of regularization which allows the ill-conditioned problem to be solved

in a principled and stable way.

For both 2-D and 3-D blobs, there is a useful physical interpretation of the blob parame-

ters in the image space. The mean represents the geometric center of the blob area (2-D) or

volume (3-D). The covariance, being symmetric semi-de�nite positive, can be diagonalized

via an eigenvalue decomposition: C = �L�T ,where � is orthonormal and L is diagonal.

The diagonal L matrix represents the size of the blob along independent orthogonal

object-centered axes and � is a rotation matrix that brings this object-centered basis in

alignment with the coordinate basis of C. This decomposition and physical interpretation is

important for estimation, because the shape L can vary at a di�erent rate than the rotation

�. The parameters must be separated so they can be treated appropriately.

Face Detection in LAFTER by Maximum Likelihood Estimation

The blob features are modeled as a mixture of Gaussian distributions in the color (or texture,

motion, etc.) space. The algorithm that is generally employed for learning the parameters

of such a mixture model is the Expectation-Maximization (EM) algorithm of Dempster et

al [58], [200]. I refer the reader to section 4.7.3 in chaper 4 for a detailed description of the

EM algorithm.

In the LAFTER system the input data vector d is the normalized R,G,B content of the

pixels in the image, x = (~r; ~g) = ( r
r+g+b ;

g
r+g+b ) . Work by Wren et al [272], or that of

Schiele et al or Hunke et al [217, 98] have shown that use of normalized or chromatic color

information (~r; ~g) = ( r
r+g+b ;

g
r+g+b) can be reliably used for �nding 
esh areas present in the

scene despite wide variations in lighting. The color distribution of each of the blobs is mod-

eled as a mixture of Gaussian probability distribution functions (pdf's) that are iteratively

estimated using EM. One can perform a maximum likelihood decision criterium after the
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clustering is done because human skin forms a compact, low dimensional (approximately

1D) manifold in color space. Two di�erent clustering techniques, both derived from EM

are employed: an o�-line training process and an on-line adaptive learning process.

In order to determine the mixture parameters of each of the blobs, the unsupervised

EM clustering algorithm is computed o�-line on hundreds of samples of the di�erent classes

to be modeled (in our case, face, lips and interior of the mouth), in a similar way as it is

done for skin color modeling in [106]. When a new frame is available the likelihood of each

pixel is computed using the learned mixture model and compared to a likelihood threshold.

Only those pixels whose likelihood is above the threshold are classi�ed as belonging to the

model. Figure 3-2 illustrates LAFTER's face detection and segmentation processes.

Figure 3-2: Face detection, per-pixel probability image computation and face blob
growing

Adaptive Modeling via EM

Even though general models make the system relatively user-independent, they are not

as good as an adaptive, user-speci�c model would be. I therefore use adaptive statistical

modeling of the blob features to narrow the general model, so that its parameters are closer

to the speci�c users' characteristics.

The �rst element of this adaptive modeling is to update the model priors as soon as the

user's face has been detected. Given n independent observations xi = (~ri; ~gi), i = 1 : : :n of

the user's face, they are modeled as being samples of a Normal distribution in color space

with mean the sample mean �user and covariance matrix, �user The skin color prior dis-

tribution is also assumed to be Normal p(xj�general;�general) = N(�general;�general) whose

parameters have been computed from hundreds of samples of di�erent users. By applying

Bayesian integration of the prior and user's distributions a Normal posterior distribution
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N(�post;�post) is obtained, whose su�cient statistics are given by:

�post = [��1
general +��1

user ]
�1

�post = �post[�
�1
general � �general + ��1

user � �user ]
(3:1)

Equation 3.1 corresponds to the computation of the posterior skin color probability distri-

bution from the prior (general) and the user's (learned from the current image samples)

models.

This update of skin model occurs only at the beginning of the sequence, assuming that

the blob features are not going to drastically change during run time. To obtain a fully

adaptive system, however, one must also be able to handle second-to-second changes in

illumination and user characteristics.

Therefore an on-line Expectation-Maximization algorithm [194, 243] is utilized to adap-

tively model the image characteristics. Both the background and the face are modeled as a

mixture of Gaussian distributions with mixing proportions �i and K components:

p(x=�) =
KX
i

�i
e�1=2(x��i)

T�
(�1)
i

(x��i)

(2�)d=2j�ij1=2
(3:2)

The unknown parameters of such a model are the su�cient statistics of each Normal dis-

tribution (�i;�i), the mixing proportions �i and the number of components of the mixture

K.

The incremental EM algorithm is data-driven, i.e., it estimates the distribution from the

data itself. Two update algorithms are needed for this purpose: A criterium for adding new

components to the current distribution as well as an algorithm for computing the su�cient

statistics of each Normal Gaussian component.

The su�cient statistics are updated by computing an on-line version of the traditional

EM update rules. If the �rst n data points have already been computed, the parameters

when data point (n+1)1 is read are estimated as follows: First, the posterior class probability

p(ijxn+1) or responsibility (credit) hn+1i for a new data point xn+1 is computed:

hn+1i =
�ni p(x

n+1=�ni )P
j �

n
j p(x

n+1=�nj )
(3:3)

1Superscript n will refer in the following to the estimated parameters when n data points have already
been processed
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This responsibility can be interpreted as the probability that a new data point xn+1 was

generated by component i. Once this responsibility is known, the su�cient statistics of the

mixture components are updated, weighted by the responsibilities:

�n+1i = �ni +
hn+1i � �ni

n
(3.4)

�n+1i = �ni +
hn+1i

n � wn
i

(xn+1 � �ni ) (3.5)

�
2(n+1)
i = �

2(n)
i +

hn+1i

n � wn
i

((xn+1 � �ni )
2 � �

2(n)
i ) (3.6)

where �i is the standard deviation of component i and wn+1
i is the average responsibility

of component i per point: wn+1
i = wn

i +
hni �w

n
i

n . The main idea behind this update rules

is to distribute the e�ect of each new observation to all the terms in proportion to their

respective likelihoods.

A new component is added to the current mixture model if the most recent observation

is not su�ciently well explained by the model. In particular, if the last observed data point

has a very low likelihood with respect of each of the components of the mixture, i.e. if it

is an outlier for all the components, then a new component is added with mean the new

data point and weight and covariance matrix speci�ed by the user. The threshold in the

likelihood can be �xed or stochastically chosen. In the latter case the algorithm would

randomly choose whether to add a component or not given an outlier. There is a maximum

number of components for a given mixture as well.

The foreground models are initialized with the o�-line unsupervised learned a priori

mixture distributions described above. In this way, the algorithm quickly converges to a

mixture model that can be directly related to the a priori models' classes. The background

models are not initialized with an a priori distribution but learned on-line from the image.

MAP segmentation

Given these models, a MAP foreground-background decision rule is applied to compute sup-

port maps for each of the classes, that is, pixel-by-pixel maps showing the class membership

of each model. Given several statistical blob models that could potentially describe some

particular image data, the membership decision is made by searching for the model with

the Maximum A Posteriori (MAP) probability.
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Once the class memberships have been determined, the statistics of each class are then

updated via the EM algorithm, as described above. This approach can easily be seen to

be a special case of the MDL segmentation algorithms developed by Darrell and Pentland

[55, 54] and later by Ayer and Sawhney [11].

Visual Surveillance System: Figure Segmentation by Eigenbackground Subtrac-

tion

The �rst step in the visual surveillance system is to reliably and robustly detect and track

the pedestrians in the scene. 2-D blob features are used for modeling each pedestrian.

In the system the main cue for clustering the pixels into blobs is motion, because there

is a static background with moving objects. To detect these moving objects an eigenspace

that models the background is adaptively built. This eigenspace model describes the range

of appearances (e.g., lighting variations over the day, weather variations, etc.) that have

been observed. The eigenspace could also be generated from a site model using standard

computer graphics techniques.

The eigenspace model is formed by taking a sample of N images and computing both

the mean �b background image and its covariance matrix Cb. This covariance matrix can

be diagonalized via an eigenvalue decomposition Lb = �bCb�T
b , where �b is the eigenvector

matrix of the covariance of the data and Lb is the corresponding diagonal matrix of its

eigenvalues. In order to reduce the dimensionality of the space, in principal component

analysis (PCA) only M eigenvectors (eigenbackgrounds) are kept, corresponding to the M

largest eigenvalues to give a �M matrix. A principal component feature vector Ii � �T
Mb
Xi

is then formed, where Xi = Ii � �b is the mean normalized image vector.

Note that moving objects, because they don't appear in the same location in the N

sample images and they are typically small, do not have a signi�cant contribution to this

model. Consequently the portions of an image containing a moving object cannot be well

described by this eigenspace model (except in very unusual cases), whereas the static por-

tions of the image can be accurately described as a sum of the the various eigenbasis vectors.

That is, the eigenspace provides a robust model of the probability distribution function of

the background, but not of the moving objects.

Once the eigenbackground images (stored in a matrix called �Mb
hereafter) are obtained,

as well as their mean �b, each input image Ii can be projected onto the space expanded by
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Figure 3-3: Background mean image, blob segmentation image and input image
with blob bounding boxes

the eigenbackground images Bi = �Mb
Xi to model the static parts of the scene, pertaining to

the background. Therefore, by computing and thresholding the Euclidean distance (distance

from feature space DFFS [154]) between the input image and the projected image we can

detect the moving objects present in the scene: Di = jIi � Bij > t, where t is a given

threshold. In the following, I will refer to Di as a motion mask. Figure 3-3 depicts typical

examples of the background mean image, the blob (pedestrian) segmentation image and the

input image with bounding boxes around each of the pedestrians. Note that it is easy to

adaptively perform the eigenbackground learning, in order to compensate for changes such

as big shadows. The motion mask Di is the input to a clustering connected component

algorithm that produces blob descriptions that characterize each person's shape. I have also

experimented with modeling the background by using a mixture of Gaussian distributions

at each pixel, as in P�nder [273]. However I �nally opted for the eigenbackground method

because it o�ered good results and less computational load.

Tracking by Kalman Filtering

Kalman �lters have extensively been used in control theory as stochastic linear estimators.

The Kalman �lter was �rst introduced by R. Kalman [118] for discrete systems and by

Kalman and Bucy [117] for continuous-time systems. The objective is to design an estimator

that provides estimates of the non-observable estate of a system taking into account the

known dynamics and the measured data. Recall that the Kalman Filter is the \best linear

unbiased estimator" in a mean squared sense and that for Gaussian processes, the Kalman

�lter equations corresponds to the optimal Bayes' estimate (for a more detailed description,

see section 4.4.1 in chapter 4).

In the LAFTER system to ensure stability of the MAP segmentation process, the spatial

parameters for each blob model are �ltered using a zero-order Kalman �lter. For each blob

two independent, zero-order �lters are maintained, one for the position of the blob centroid
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and another for the dimensions of the blob's bounding box. The MAP segmentation loop

now becomes:

1. For each blob predict the �lter state vector, X� = X̂ and covariance matrix, C� =

Ĉ + (�t)2W , where the matrix W measures the precision tolerance in the estimation

of the vector X and depends on the kinematics of the underlying process.

2. For each blob new observations Y (e.g., new estimates of blob centroid and bounding

box computed from the image data) are acquired and the Mahalanobis distance be-

tween these observations (Y,C) and the predicted state (X̂; Ĉ) is computed. If this

distance is below threshold, the �lters are updated by taking into account the new

observations:

Ĉ =
h
C
�
�1

+C�1
i
�1

(3.7)

X̂ = Ĉ

h
C
�
�1

X
� +C�1Y

i
�1

(3.8)

Otherwise a discontinuity is assumed and the �lters are reinitialized: X̂ = X� and

Ĉ = C�.

A generalized version of this technique is employed in [51] for fusing several concurrent

observations. This Kalman �ltering process is used in the tracking of all of the blob features.

In my experience the stability of the MAP segmentation process is substantially improved

by use of the Kalman �lter, specially given that LAFTER's real-time performance yields

small errors in the predicted �lter state vectors. Moreover, smooth estimates of the relevant

parameters are crucial for preventing jittering in the active camera, as described in section

3.2.

In the visual surveillance application, the trajectories of each blob are computed and

saved into a dynamic track memory. Each trajectory has associated a �rst order Kalman

�lter that predicts the blob's position and velocity in the next frame.

In order to handle occlusions as well as to solve the correspondence between blobs over

time, the appearance of each blob is also modeled by a Gaussian pdf in RGB color space.

When a new blob appears in the scene, a new trajectory is associated to it. Thus for each

blob the Kalman-�lter-generated spatial pdf and the Gaussian color pdf are combined to

form a joint (x; y) image space and color space pdf. In subsequent frames the Mahalanobis

distance is used to determine the blob that is most likely to have the same identity.
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Active Camera Control in LAFTER

Because LAFTER already maintains a Kalman �lter estimate of the centroid and bounding

box of each blob, it is a relatively simple matter to use these estimates to control an

active camera so that the face of the user always appears in the center of the image and

with the desired size. LAFTER uses an abstraction of the camera control parameters, so

that di�erent camera/motor systems (currently the Canon VCC1 and Sony EVI-D30) can

be successfully used in a transparent way. In order to increase tracking performance, the

camera pan-tilt-zoom control is done by an independent light-weight process (thread) which

is started by the main program. The Sony EVI-D30 camera is capable of doing panoramic

(left-right) and tilt (up-down) rotations about two orthogonal axes, lens zooming within the

range of 5:4 � 64:8 mm, and auto focus. The rotation ranges are �100o (pan) and � 25o

(tilt). The ranges of the angles of view of the lens are roughly 3:3o � 36:6o (vertical) and

4:4 � 48:8o (horizontal).

The current estimation of the position and size of the user's face provides a reference

signal to a PD controller which determines the tilt, pan and zoom of the camera so that

the target (face) has the desired size and is at the desired location. The zoom control is

relatively simple, because it just has to be increased or decreased until the face reaches the

desired size. Pan and tilt speeds are controlled by Sc =
Ce�E+Cd�

dE
dt

Fz
, where Ce and Cd are

constants, E is the error, i.e. the distance between the face current position and the center

of the image, Fz is the zoom factor, and Sc is the �nal speed transmitted to the camera.

The zoom factor plays a fundamental role in the camera control because the speed with

which the camera needs to be adjusted depends on the displacement that a �xed point

in the image undergoes for a given rotation angle, which is directly related to the current

zoom factor. The relation between this zoom factor and the current camera zoom position

follows a non-linear law which needs to be approximated. In our case, a second order

polynomial provides a good approximation. Figure 3-4 illustrates the processing 
ow of the

PD controller.

Speed, Accuracy, and Robustness

Running LAFTER on a single SGI Indy with a 200Mhz R4400 processor, the average frame

rate for tracking is typically 25 Hz. When mouth detection and parameter extraction are
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Figure 3-4: PD Controller

added to the face tracking, the average frame rate is 14 Hz.

To measure LAFTER's 3D accuracy during head motion, the RMS error was measured

by having users make large cyclic motions along the X, Y, and Z axes respectively, with the

true 3D position of the face being determined by manual triangulation. In this experiment

the camera actively tracked the face position, with the image-processing/camera-control

loop running at a nearly constant 18hz. The image size was 1/6 full resolution, i.e. 106x80

pixels, and the camera control law varied pan, tilt, and zoom to place the face in the center

of the image at a �xed pixel resolution. Figure 3-5 illustrates the active-camera tracking

system in action. The RMS error between the true 3D location and the system's output

was computed in pixels and is shown in table 3.1. Also shown is the variation in apparent

head size, e.g., the system's error at stabilizing the face image size. As can be seen, the

system gave quite accurate estimates of 3D position. Perhaps most important, however,

is the robustness of the system. LAFTER has been tested on hundreds of users at many

di�erent events, each with its own lighting and environmental conditions. Examples are the

Digital Bayou, part of SIGGRAPH '96, the Second International Face & Gesture Workshop

(October 96) or several open houses at the Media Laboratory during the years 1996 to 1998.

In all cases the system failed in approximately 5�7% of the cases, when the users had dense

beard, extreme skin color or clothing very similar to the skin color models.
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Figure 3-5: Active camera tracking

Multi-resolution Processing in LAFTER: Mouth Extraction and Tracking

Once the face location and shape parameters are known (center of the face, width, height

and image rotation angle), anthropometric statistics are used to de�ne a bounding box

within which the mouth must be located.

The mouth is modeled using the same principles as the face, i.e. through a second-order

mixture model that describes both its chromatic color and spatial distribution. However to

obtain good performance a more �nely detailed model of the face region surrounding the

mouth is needed. The face model that is adequate for detection and tracking might not be

adequate for accurate mouth shape extraction.

The system, therefore, acquires image patches from around the located mouth 2 and

builds a Gaussian mixture model. In the current implementation, skin samples of three

di�erent facial regions around the mouth are extracted during the initialization phase and

2The mouth extraction and processing is performed on a Region of Interest (ROI) extracted from a full
resolution image (i.e. 640x480 pixels) whereas the face detection and processing is done on an image of 1/6
full resolution, i.e. 106x80 pixels
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Translation X RMS Y RMS
Range Error Error

(pixels) (pixels)

Static 0.0 cm 0.5247 0.5247
Face (0.495 %) (0.6559 %)

X +
�76 cm 0.6127 0.8397

translation (0.578 %) (1.0496 %)

Y +
�28 cm 0.8034 . 1.4287

translation (1.0042 %) (1.7859 %)

Z +
�78 cm 0.6807 1.1623

translation (0.6422 %) (1.4529 %)

Width Std Height Std Size change
(pixels) (pixels) (pixels )

Zooming 2.2206 2.6920 Max. size: 86x88

(2.09 %) (3.36 %) Min. size: 14x20

Table 3.1: Translation and zooming active tracking accuracies.

their statistics are computed, as is depicted in �gure 3-6. The second image in the same

�gure is an example of how the system performs in the case of facial hair. The robustness

patches
Learned

Multi-resolution and face skin patches learning

Figure 3-6: Multi-resolution mouth extraction, skin model learning. Head and
mouth tracking with rotations and facial hair

of the system is increased by computing at each time step the linearly predicted position of

the center of the mouth. A con�dence level on the prediction is also computed, depending

on the prediction error. When the prediction is not available or its con�dence level drops

below a threshold, the mouth's position is reinitialized.

3.3 Perception in the SmartCar

Smart cars

Our SmartCar is an automobile equipped with sensors and computers. The sensors enable

the car to perceive the road, potential hazards, other vehicles and its own internal state
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(acceleration throttle, gear, brake pedal activity, speed); the computers gather data from

these sensors and process the information to recognize the current action that the driver

and eventually the surrounding cars are doing, and to predict what will be their most likely

next action.

Computers, unlike humans, are not subject to fatigue, boredom or distractions. Single

vehicle roadway departure crashes (caused by driver inattention or impairment) account

for almost 15000 deaths in the US annually [256]. Therefore a system able to augment

the driver in these capacities could potentially have a substantial impact in reducing the

number of accidents caused by such factors.

There have been di�erent proposed designs for Intelligent Highway Systems (IHS): some

advocate for completely computer-controlled vehicles (autonomous navigation) while others

propose mixed approaches, where the vehicles have some intelligence to assist the human

drivers. The latter approach is the one pursued in this thesis: the purpose of the SmartCar

is to augment the driver as opposed to substitute for him.

Perceptual Issues At the tactical level3 it is usually expected that perception systems

can reliably track tra�c entities such as vehicles, lanes and exits {along with information

about the entity as the speed of a vehicle or the distance to an exit. Thus previous work

on tactical driving modeling [203, 130, 50] has generally assumed that the smart vehicle

has complete perfect knowledge of its surroundings. However there are several perceptual

e�ects that are important at the tactical level:

1. Blindspots: The smart vehicle's sensors might not be able to scan all around the

vehicle, or may only provide limited information (such as presence/absence of objects).

To tackle blindspots the vehicle should make some assumptions about the contents of

the unknown region.

2. Occlusion: Even if 360 degrees coverage is available, on-board sensors cannot see

through opaque objects. This problem is specially severe when the smart vehicle is

surrounded by large vehicles such as trucks or buses. Assuming that occluded regions

are free of obstacles is risky.

3In section 5.5.2 of chapter 5 the driving taxonomy is described. It consists of three levels: strategic,
tactical and operational.
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3. Sensor noise: Measurements from real sensors are noisy for a variety of reasons.

Physical phenomena (e.g. specular re
ections), software limitations (e.g. range buck-

ets) and unreliable tracking all introduce uncertainty into the observed world at-

tributes.

4. Sensor limits: Current sensing technology is able to provide su�ciently accurate

measurements of range and relative velocity of other vehicles (using computer vision,

radar, sonar or optical 
ow) within a reasonable sensor range. At further ranges,

errors in bearing may make object-to-lane mapping unreliable. Moreover, higher

order derivatives of position such as acceleration or jerk are very noisy and cannot be

assumed to be available.

To collect driving data in real situations (see section 5.5.5 in chapter 5), I have instru-

mented a Volvo V70XC, generously donated by Volvo for research purposes. The goal is to

design and implement a data gathering platform for acquiring real-time driving maneuvers.

In particular, I have collected driving maneuvers at a tactical level, as described in the

experimental part of this thesis (section 5.5). In general, there are at least three di�er-

ent aspects relevant to the level of driving that is the subject of this thesis (tactical-level

driving):

1. SmartCar physical self-state: information sensed from the speedometer, acceleration

throttle, steering wheel angle sensor (rotary potentiometer), brake pedal, gear and

GPS unit.

2. Road state: including road geometry and exit information.

3. Tra�c state: relative speeds, direction and distances of the surrounding tra�c.

The sensors installed in the SmartCar provide information about the internal state of the

car (brake, gear, acceleration throttle, steering wheel angle and speed), the driver's face and

gaze, the surrounding tra�c and the road lanes' positions. I have not analyzed the road

geometry, marks or exit information. Figure 3-7 illustrates the instrumentation that I have

installed in the car.

The instrumented Volvo has the following sensors:

1. Frontal and rear wide �eld-of-view Sony EVI-D30 cameras mounted respectively on

the frontal dash-board and on a tripod in the trunk (see �gure 3-8 (a) and (b))
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Figure 3-7: SmartCar (Volvo V70XC)

2. ELMO CCD QN401E color camera mounted on the steering wheel to record the

driver's facial expressions, head pose and gaze (see �gure 3-8 (c))

3. ELMO CCD QN401NE color camera mounted on a pair of glasses worn by the driver

to record the driver's viewpoint (see �gure 3-8 (d))

4. Steering wheel angle sensor using a rotary potentiometer mounted on the steering

wheel (see �gure 3-8 (c))

5. Gear, acceleration throttle, brake pedal action and speed coming from the car internal

data bus

6. GPS unit

All the video signals are combined in a quadsplitter whose output is recorded using a

Sony GV-A500 Hi8 Video Walkman recorder.

The �rst version of the data acquisition system was self-designed and built. The hard-

ware consisted of PIC microcontrollers, A/D converters and additional electronic compo-

nents to perform the analog-to-digital conversion, sampling and synchronization of all the

car signals. The user interface was built on top of Sun Microsystem's COMMAPI (Commu-

nications API), a native library that allows serial-port communications in Java. The host
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(a) (b)

(c) (d)

Figure 3-8: SmartCar sensors: (a) Front and rear wide-�eld-of-view cameras (b)
Steering wheel sensor and driver's face camera (c) Driver's viewpoint camera

machine performed data collection by polling via the serial port each sensor independently,

waiting for its response and logging the returned data to a �le. Since all the sensors shared

the same serial port, each sensor had to be addressed by a unique 8-bit ID. Finally, another

Java application let the user read the log �les with the recorded data and play them back

in a graphical, intuitive fashion to facilitate data analysis. Even though this �rst proto-

type was operative, the system turned out to be too fragile for an automotive application.

Therefore, I had to re-design the entire data acquisition hardware and software.

The current implementation of the hardware and software for acquiring in real-time

car state data has been developed using National Instruments products. The hardware

obtains its inputs from sources of three di�erent nature as shown in table 3.2. All the car

signals are connected to a Sony VAIO PCG-N505VE Intel Celeron microprocessor laptop

computer via a PCMCIA Data Acquisition Card (DAQCard-AI-16XE-50) by National In-

struments (http://www.ni.com). The analog signals are digitized (16 bits) and sampled at

150 scans/sec. The digital signals are sampled using the same card at 150 scans/sec. All the
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signals can be directly connected to one of these boards, except for the speed given that it

consists of a 12 pulse-per-revolution signal. Therefore for this signal a frequency-to-voltage

converter is needed to convert it to analog.

Signal Nature Description

Speed Analog 12 pulse per wheel revolution, square wave
Acceleration Analog Linear 0-12 V
Brake Pedal Digital Boolean (0=brake is o�, 1=brake is on)
Gear Digital 2-bit
Steering wheel angle Analog Up to 3 revolutions
GPS Digital NMEA ASCII string

Table 3.2: Sensor signals in the Smart Car.

The laptop and VCR are synchronized to guarantee the temporal alignement of the

acquired signals.

The software for data acquisition and playback has been developed in LabVIEW. Lab-

VIEW is a powerful programming environment used in engineering and scienti�c environ-

ments. LabVIEW is based on a functional programming language known as G, developed

by National Instruments. It is based on graphics instead of written lines of text. The icon

based programming structure is based on logical sequencing of images and is essentially

independent of written language.

In LabVIEW, programs are referred to as VIs. VI stands for virtual instrument. I have

developed graphical LabVIEW programs for calibrating the car signals, acquiring (triggering

the acquisition and annotating the driving maneuvers as they take place), post-processing,

analyzing and visualizing data. Figure 3-9 depicts one part of the entire data acquisition

LabVIEW environment that I have developed in this thesis. The data acquisition system

runs on the Sony VAIO laptop.

The contextual information is acquired via the video signals. I have developed a video

processing graphical environment that let's the user record, playback and annotate the video

signals coming from the front, rear and face driver cameras. Figure 3-10 depicts one screen-

shot of the program. Table 3.3 contains the information that was manually annotated for

each frame of the maneuvers.
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Figure 3-9: Example of LabVIEW graphical user interface and diagram.
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Front and rear tra�c Driver's face Road lanes

Position Right/Left/Same Front/Rear-view mirror Right/Left
Right mirror/Left mirror

Right/Left
Relative Speed Slower/Same/Faster

Relative Distance Far/Medium/Close
Direction Same/Opposite

Representation Rectangle Rectangle line

Table 3.3: Information from the video annotation process

(a)

(b)

Figure 3-10: Graphical User Interface for video signals annotation: (a) Input image
(b) Annotated image.
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Chapter 4

Graphical Models For Human

Behavior Modeling

This chapter describes the mathematical framework for learning from data individual,

person-to-person and potentially multi-agent interactive behaviors. This chapter, thus,

describes the upper-most layer of the human behavior model proposed in this thesis. Figure

4-1 highlights this layer within the model. I would claim in this thesis, in a similar way as

it has been proposed in [184], that many human behaviors can be accurately described as a

set of dynamic models (e.g. Kalman �lters) sequenced together by a Markov chain. From

this perspective, the human is considered as a device with a large number of internal mental

states, each with its own particular control behavior and interstate transition probabilities.

A canonical example of this type of model would be a bank of standard linear controllers (e.g.

Kalman �lters plus a simple control law), each using di�erent dynamics and measurements,

sequenced together with a Markov network of probabilistic transitions. The states of the

model can be hierarchically organized to describe both short-term and long-term behaviors.

In this chapter I will develop the theory behind these kind of models. First, I will present

the general theory of dynamic graphical models. Then I will describe in detail the speci�c

dynamic graphical model architectures used in this thesis for modeling human interactive

behaviors.

In order to build e�ective computer models of human behaviors one needs to address the

question of how knowledge can be mapped onto computation to dynamically deliver con-

sistent interpretations. From a strict computational viewpoint there are two key problems
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Figure 4-1: The perceptual system occupies the lowest level in the proposed model

when processing the continuous 
ow of feature data coming from a stream of input video:

(1) Managing the computational load imposed by frame-by-frame examination of all of the

agents and their interactions. For example, the number of possible interactions between

any two agents of a set of N agents is N � (N � 1)=2. If naively managed this load can

easily become large for even moderate N ; (2) Even when the frame-by-frame load is small

and the representation of each agent's instantaneous behavior is compact, there is still the

problem of managing all this information over time.

Statistical directed acyclic graphs (DAGs) or probabilistic inference networks (PINs)

[38, 89] can provide a computationally e�cient solution to these problems. Moreover I

propose that DAGs o�er a su�ciently expressive and adequate framework for building

models of human individual and interactive behaviors. Hidden Markov Models (HMMs)

and their extensions, such as the architecture used in this thesis, namely Coupled Hidden

Markov Models (CHMMs) [28, 30], can be viewed as a particular, simple case of temporal

PIN or DAG. PINs consist of a set of random variables represented as nodes as well as

directed edges or links between them. They de�ne a mathematical form of the joint or

conditional pdf between the random variables. More importantly from a human behavior

perspective, they constitute a simple graphical way of representing causal dependencies
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between variables. It has been remarked in chapter 2 that causality plays a crucial role

in human behavior understanding. The absence of directed links between nodes implies

a conditional independence. Moreover there is a family of transformations performed on

the graphical structure that has a direct translation in terms of mathematical operations

applied to the underlying pdf. Finally they are modular, i.e. one can express the joint global

pdf as the product of local conditional pdfs.

In the following sections I will describe the basic theory behind PINs. Some of the

material can be found in [227], [81] and [28]. The major contributions of this thesis in

this area are: (1) the use of dynamic graphical models in perceptual systems for modeling

individual, person-to-person or multi-agent real behaviors; (2) the proposal and use of a

new graphical structure called Coupled Hidden Markov Models (CHMMs) that speci�cally

captures causal in
uence between generative processes; (3) the proposal and use of a two-

layer hierarchical architecture with a Kalman Filter at the lowest level and a Hidden Markov

Model {or extension{ at the upper level (see �gure 1-3); (4) the validation of the proposed

models with extensive human behavior data collected in real situations.

I will describe the models from two di�erent perspectives: from the viewpoint of dynamic

bayesian networks (graphical models) and from the traditional viewpoint of HMMs and

extensions.

4.1 Background and Notation

For multivariate statistical modeling applications, such as the recognition of the human

behaviors, the identi�cation and manipulation of relevant conditional independence as-

sumptions is a useful tool for model building and analysis. There has been a considerable

amount of work exploring the relationships between conditional independence in probabil-

ity models and structural properties of the associated graphs. In particular, the separation

properties of a graph can be directly related to conditional independence properties in a set

of associated probability models.

The analysis and manipulation of HMMs, CHMMs and related structures can be facil-

itated by exploiting the relationship between probability models and graphs. The major

advantages to be gained are in:

� Model description: A graphical model provides a natural and intuitive framework
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for representing dependencies between random variables. In particular, the struc-

ture of the graphical model clari�es the conditional independencies in the associated

probability models, allowing model assessment and revision.

� Computational e�ciency: The graphical model framework is a powerful basis for

specifying e�cient algorithms for computing quantities of interest in the probability

model, e.g., calculation of the probability of observed data given the model. These

inference algorithms can be speci�ed automatically once the initial structure of the

graph is determined.

In the following will refer to both probability models and graphical models. Each is

composed of:

1. Structure: The structure of the model consists of the speci�cation of a set of condi-

tional independence relations for the probability model, or a set of (missing) edges

in the graph for the graphical model. The graph not only allows to understand the

dependencies between variables, but also serves as the backbone for e�ciently com-

puting marginal and conditional probabilities that may be required for inference and

learning.

2. Parameters: The parameters of both probability and graphical models consist of the

speci�cation of the joint probability distribution: in factored form for the probability

model and de�ned locally on the nodes of the graph in the graphical model.

There are three basic problems that are usually addressed in statistical machine learning:

1. The inference problem deals with computing the posterior probabilities of variables of

interest given observable data and given a particular speci�cation of the probabilistic

model. The conditional independence relations derived from the absence of arcs in a

graphical model can be exploited to obtain e�cient algorithms for computing marginal

and conditional probabilities. For singly connected graphs, in which the underlying

undirected graph has no loops, there exist a number of equivalent algorithms, such

as belief propagation, junction tree, JLO (described in detail in section 4.5), and the

Dawid algorithms. For multiply connected networks, in which there can be more

than one undirected path between any two nodes, the junction tree, JLO or Dawid

algorithms can be used, but not belief propagation. However, there has been recent
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progress on using belief propagation in graphs with a single loop, leading to a new

algorithm called \loopy belief propagation" [158]. Just recently Weiss and Freeman

[261] analyze the behavior of belief propagation in graphs of arbitrary topology when

the nodes in the graph describe jointly Gaussian random variables. The authors give

an analytical formula relating the true posterior probabilities with those calculated

using loopy belief propagation.

2. The related task of MAP identi�cation is the determination of the most likely state

of a set of unobserved variables, given observed variables and the probabilistic model.

3. The learning or estimation problem is that of determining the parameters (and pos-

sibly structure) of the probabilistic model from data.

4.2 Notation and Background

Let U = X1; X2; : : : ; XN represent a set of discrete-valued random variables. Even though

I will develop in this chapter the theory for discrete-valued random variables, many of

the results generalize directly to continuous and mixed sets of random variables ([139],

[265]). Let lower case x1 denote one of the values of variable X1. The notation
P

x1

means the sum over all possible values of X1. Let p(xi) be shorthand for the particular

probability p(Xi = xi), whereas p(Xi) represents the probability function for Xi (i.e. a

table of probability values, since Xi is assumed to be discrete), 1 � i � N . The full joint

distribution function is p(U) = (X1; X2; : : : ; XN), and p(u) = (x1; x2; : : : ; xN) denotes a

particular value assignment for U .

If A;B and C are disjoint sets of random variables, the conditional independence re-

lation A ? BjC is de�ned such that A is independent of B given C, i.e. p(A;BjC) =

p(AjC)p(BjC). Conditional independence is symmetric. Note also that marginal inde-

pendence (no conditioning) does not in general imply conditional independence, nor does

conditional independence in general imply marginal independence ([265]).

With any set of random variables U we can associate a graph G de�ned as G = (V;E).

The set of vertices or nodes in the graph are denoted by V such that there is a one-

to-one mapping between the nodes in the graph and the random variables, i.e., V =

X1; X2; : : : ; XN . The set of edges is denoted by E = e(i; j), where i and j are short-

hand for the nodes Xi and Xj , 1 � i; j � N . Edges of the form e(i; i) are not of interest
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and thus are not allowed in the graphs discussed in this thesis.

If the edges are ordered such that e(i; j) means that the edge is directed from node i to

node j, i is a parent of its child j. An ancestor of a node i is a node which has as a child

either i or another ancestor of i. A subset of nodes A is an ancestral set if it contains its

own ancestors. A descendant of i is either a child of i or a child of a descendant of i.

Two nodes i and j are adjacent in G if the set of all edges, E, contains the edge e(i; j).

A path is a sequence of distinct nodes f1; 2; : : : ; mg such that there exists an edge for each

pair of nodes fl; l + 1g on the path. A graph is singly-connected if there exists only one

path between any two nodes in the graph. A cycle is a path such that the beginning and

ending nodes on the path are the same. A directed cycle is a cycle of directed edges which

all point in the same direction.

If E contains only undirected edges then the graph G is an undirected graph, UG. If

E contains only directed edges and no directed cycles, then G is an directed acyclic graph,

DAG. If E contains a mixture of directed and undirected edges, then it is referred to as a

mixed or chain graph. There exists a theory for graphical independence models involving

mixed graphs ([265]) but mixed graphs will not be discussed further in this thesis.

For an UG, G, a subset of nodes C separates two other subsets of nodes A and B if

every path joining every pair of nodes i 2 A and j 2 B contains at least one node from

C. For DAGs and mixed graphs analagous, but somewhat more complicated, separation

properties exist.

A cycle is chordless if no other than successive pairs of nodes in the cycle are adjacent.

A graph G is triangulated if and only if the only chordless cycles in the graph contain no

more than three nodes. Thus, if one can �nd a chordless cycle of length four or more, G is

not triangulated.

A graph G is complete if there are edges between all pairs of nodes. The cliques of G

are the largest subgraphs of G that are complete. A clique tree of G is a tree of cliques such

that there is a one-to-one node correspondence between the cliques of G and the nodes of

the tree.
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4.3 Probabilistic Independence Networks (PINs)

So far I have described some properties and de�nitions of graphs, without alluding to

the underlying probability model represented by the graph. In this section I will review

brie
y the relation between a probabilistic independence network structure G = (V;E)

and a probability model p(U) = p(X1; X2; : : : ; XN). The results in this section are largely

summarized versions of material in [179] and [265].

A probabilistic independence network structure (PIN structure) G is a graphical state-

ment of a set of conditional independence relations for a set of random variables U . Absence

of an edge, e(i; j) in G implies some independence relation between the associated variables,

Xi and Xj . Thus, a PIN structure G is a particular way of specifying some independence

relationships present in the probability model p(U). We say that G implies a set of prob-

ability models p(U), denoted as PG, i.e., p(U) 2 PG . In the reverse direction, a particular

model p(U) embodies a particular set of conditional independence assumptions which may

or may not be representable in a consistent graphical form. One can derive all of the condi-

tional independence properties and inference algorithms of interest for U without reference

to graphical models. However, as has been emphasized in the statistical and AI literature,

and it is reiterated in this thesis in the context of HMMs and extensions, there are distinct

advantages to be gained from using the graphical formalism.

4.3.1 Undirected Probabilistic Independence Networks (UPINs)

A UPIN is composed of both a UPIN structure and UPIN parameters. A UPIN struc-

ture speci�es a set of conditional independence relations for a probability model in the form

of an undirected graph. UPIN parameters consist of numerical speci�cations of a partic-

ular probability model consistent with the UPIN structure. Terms used in the literature

to describe UPINs of one form or another include Markov random �elds (MRFs), Markov

networks, Boltzmann machines and log-linear models.

Conditional independence semantics of UPIN structures Let A;B and S be any

disjoint subsets of nodes in an undirected graph UG, G. G is an undirected probabilistic

network structure (UPIN structure) for p(U) if for any A;B and S such that S separates

A and B in G, the conditional independence relation A ? BjS holds in p(U). The set of all

conditional independence relations implied by separation in G constitute the global Markov
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properties of G. Figure 4-2 shows a simple example of a UPIN structure for 7 variables.

2

X

X

X

X

X

4

7X
1

3

5

6

X

Figure 4-2: UPIN structure G which captures a particular set of conditional in-
dependence relationships among the set of variables fX1; : : : ; XNg. For example,
X5 ? fX1; X2; X3; X4; X6gjfX3g.

Thus, separation in the UPIN structure implies conditional independence in the prob-

ability model, i.e., it constraints p(U) to belong to a set of probability models PG which

obey the Markov properties of the graph. Note that a complete UG is trivially a UPIN

structure for any p(U) in the sense that there are no constraints on p(U). G is a perfect

undirected map for p if G is a UPIN structure for p and all the conditional independence

relations present in p are represented by separation in G. For many probability models p

there are no perfect undirected maps. A weaker condition is that a UPIN structure G is

minimal for a probability model p(U) if the removal of any edge from G implies an indepen-

dence relation which is not present in the model p(U), i.e. the structure without the edge

is no longer a UPIN structure for p(U). Minimality is not equivalent to perfection (for

UPIN structures) since, for example, there exist probability models with independencies

which can not be represented as UPINs except for the complete UPIN structure. For

example, if X1 and X2 are marginally independent, but conditionally dependent given X3

(see �gure 4-5, for an example), then the complete graph is the minimal UPIN structure

for fX1; X2; X3g but it is not perfect because of the presence of an edge between X1 and

X2.

Probability functions on UPIN structures Given a UPIN structure G, the joint

probability distribution for U can be expressed as a simple factorization:

p(u) = p(x1; : : : ; xN) =
Y
VC

aC(xC) (4:1)
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where VC is the set of cliques of G, xC represents a value assignment for the variables in a

particular clique C, and the aC(xC) are non-negative clique functions. The clique functions

represent the particular parameters associated with the UPIN structure. This corresponds

directly to the standard de�nition of a Markov random �eld [101]. The clique functions

re
ect the relative "compatibility" of the value assignments in the clique.

X

X

2X

1X

3

7X

5X

X6

4

Figure 4-3: A triangulated version of the UPIN structure G from �gure 4-2

A model p is said to be decomposable if it has a minimal UPIN structure G which is

triangulated. Figure 4-3 illustrates an example. A UPIN structure G can be converted to

a junction tree, which is a tree of cliques of G arranged such that the cliques satisfy the

running intersection property: each node in G which appears in any two di�erent cliques

also appears in all the cliques on the path between these two cliques. Associated with each

edge in the junction tree there is a separator S, such that S contains the variables in the

intersection of the two cliques that it links. Given a junction tree representation, one can

factorize p(U) as the product of clique marginals over separator marginals ([179]):

p(u) =

Q
C2VC

p(xC)Q
S2VS

p(xS)
(4:2)

where p(xC) and p(xS) are the marginal (joint) distributions for the variables in clique

C and separator S respectively, and VC and VS are the set of cliques and separators in the

junction tree.

This product representation is central to the results in the rest of this chapter. It is the

basis of the fact that globally consistent probability calculations on U can be carried out

in a purely local manner. The mechanics of these local calculations are described later in

this chapter. At this point it is su�cient to note that the complexity of the local inference

algorithms scales as the sum of the sizes of the state-spaces of the cliques. Thus, local clique
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updating can make probability calculations on U much more tractable than using "brute

force" inference, if the model decomposes into relatively small cliques.

Many probability models of interest may be not decomposable. However, we can de�ne

a decomposable cover GT for p such that GT is a triangulated, but not necessarily minimal,

UPIN structure for p. Since any UPIN G can be triangulated simply by addition of the

appropriate edges, one can always identify at least one decomposable cover of GT . However,

a decomposable cover may not be minimal in that it can contain edges which obscure certain

independencies in the model p. For example, the complete graph is a decomposable cover

of all possible probability models p over the variables. For e�cient inference, the goal is to

�nd a decomposable cover GT such that GT contains as few extra edges as possible over

the original UPIN structure G. Later in this chapter I will discuss an algorithm for �nding

decomposable covers for arbitrary PIN structures. All singly-connected UPIN structures

imply probability models PG which are decomposable.

Note that, given a particular probability model p and a UPIN G for p, the process of

adding extra edges to G to create a decomposable cover does not change the underlying

probability model p, i.e., the added edges are a convenience for manipulating the graphical

representation, but the underlying numerical probability speci�cations remain unchanged.

An important point is that decomposable covers have the running intersection property

and thus can be factored as in equation 4.2: thus local clique updating is also possible with

non-decomposable models via this conversion. Once again, the complexity of such local

inference scales with the sum of the size of state-spaces of the cliques of the decomposable

cover.

In summary, any UPIN structure can be converted to a junction tree permitting inference

calculations to be carried out purely locally on cliques.

4.3.2 Directed Probabilistic Independence Networks (DPINs)

A DPIN is composed of both a DPIN structure and DPIN parameters. A DPIN

structure speci�es a set of conditional independence relations for a probability model in

the form of a directed graph. DPIN parameters consist of numerical speci�cations of a

particular probability model consistent with the DPIN structure. DPINs are referred to

in the literature using di�erent names, including Bayes networks, belief networks, recursive

graphical models, causal belief networks, and probabilistic causal networks.
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Conditional Independence Semantics of DPIN Structures

A DPIN structure is a DAG GD = (V;E) where there is a one-to-one correspondence

between V and the elements of the set of random variables U = X1; : : : ; XN .

The moral graph GM of GD is de�ned as the undirected graph obtained from GD by

placing undirected edges between all non-adjacent parents of each node and then dropping

the directions from the remaining directed edges. See �gure 4-4 for an example of how to

obtain the moral graph from a DAG. The term \moral" was coined to denote the \marrying"

of \unmarried" (non-adjacent) parents.

(a) (b) (c)

Figure 4-4: (a) A DPIN structure GD which captures a set of independence rela-
tionships among the set fA;B : : : ; Kg. (b) The moral graph GM for GD, where the
parents of every node have been linked. (c) The triangulated graph.

Let A;B and S be any disjoint subsets of nodes in GD. GD is aDPIN structure for p(U)

if for any A;B and S such that S separates A and B in GD, the conditional independence

relation A ? BjS holds in p(U). This is the same de�nition as for a UPIN structure,

except that separation has a di�erent interpretation in the directed context: S separates A

from B in a directed graph if S separates A from B in the moral (undirected) graph of the

smallest ancestral set containing A;B and S [136]. It can be shown that this is equivalent

to the statement that a variable Xi is independent of all other nodes in the graph except

for its descendants, given the values of its parents. Thus, as with a UPIN structure, the

DPIN structure implies certain conditional independence relations, which in turn imply a

set of probability models p 2 PGD . Figure 4-4 contains a simple example of the steps to

follow to obtain a triangulated graph from a DPIN .

94



4.3.3 Probability Functions on DPINs

A basic property of a DPIN structure is that it implies a direct factorization of the joint

probability distribution p(U):

p(u) =
NY
i=1

p(xijpa(xi)) (4:3)

where pa(xi) are the value assignment for the parents of the node Xi. A probability

model p can be written in its factorized form in a trivial manner by the conditioning rule.

Consequently there are many possible DPIN structures consistent with a particular proba-

bility model p, potentially containing extra edges which hide true conditional independence

relations. Thus, one can de�ne minimal DPIN structures for p in a manner exactly equiv-

alent to that of UPIN structures: deletion of an edge in a minimal DPIN structure GD is

a perfect DPIN structure G for p if GD is a DPIN structure for p and all the conditional

independence relations present in p are represented by separation in GD. As with UPIN

structures, minimal does not imply perfect for DPIN structures. For example, the UPIN

in �gure 4-5 (b) encodes the independence relations: X1 ? X3jX2; X4 and X2 ? X4jX1; X3.

However, the minimal DPIN structure contains an edge from X4 to X2.

1

X

X

2

3X

1

X

X

X4

X3

2

(a) (b)

Figure 4-5: (a) The DPIN structure to encode the fact that X3 depends on X1

and X2, but X1 ? X2. For example, consider that X1 and X2 are two independent
coin 
ips and that X3 is a bell which rings when the 
ips are the same. There is
no perfect UPIN structure which can encode these dependence relationships. (b) A
UPIN structure which encodes X1 ? X3jX2; X4 and X2 ? X4jX1; X3. There is no
perfect DPIN structure that can encode these dependencies.
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4.3.4 Di�erences between Directed and Undirected Graphical Represen-

tations

It is important to emphasize that directed and undirected graphs possess di�erent con-

ditional independence semantics. There are common conditional independence relations

which have perfect DPIN structures but no perfect UPIN structure and vice-versa. See

�gure 4-5 for an example.

Does a DPIN structure have the same Markov properties as the UPIN structure

obtained by dropping all the directions on the edges in the DPIN structure? The answer is

yes, if and only if the DPIN structure contains no subgraphs where a node has two or more

non-adjacent parents [265], [179]. In general it can be shown that if a UPIN structure G for

p is decomposable (triangulated) then it has the same Markov properties as some DPIN

structure for p.

On a more practical level, DPIN structures are frequently used to encode causal in-

formation, i.e. to formally represent the belief that Xi preceeds Xj in some causal sense,

e.g. temporally DPINs have found application in causal modeling in applied statistics

and arti�cial intelligence. Their popularity in these �elds stems from the fact that the

joint probability model can be speci�ed directly via equation 4.3, i.e. via the speci�cation

of conditional probability tables or functions [231]. In contrast, UPINs must be speci-

�ed in terms of clique functions (as in equation 4.1) which may not be easy to work with

(cf. [78, 153, 250] for examples of ad hoc design of clique functions in image processing).

UPINs are more frequently used in problems such as image analysis and statistical physics

where associations are thought to be correlational rather than causal. Causality is central

in human behavior modeling (see chapter 2). Therefore the behavior models developed and

proposed in this thesis are DPIN temporal structures.

4.3.5 From DPINs to Decomposable UPINs

The moral UPIN structure GM obtained from the DPIN structure GD does not imply any

new independence relations which are not present in GD. As with triangulation, however,

the additional edges may obscure conditional independence relations which are implicit in

the numeric speci�cation of the original probability model p associated with the DPIN

structure GD. Furthermore, GM might not be triangulated (decomposable). By the addi-
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tion of appropriate edges, the moral graph can be converted to a non-unique triangulated

graph GT , namely a decomposable cover for GM . In this manner, for any probability model

p for which GD is a DPIN structure, one can construct a decomposable cover GT for p.

This mapping from DPIN structures to UPIN structures was �rst discussed in the

context of e�cient inference algorithms by Lauritzen and Spiegelhalter ([137]). The advan-

tage of this mapping derives from the fact that analysis and manipulation of the resulting

UPIN is considerably more direct than dealing with the original DPIN . Furthermore, it

has been shown that many of the inference algorithms for DPINs are in fact special cases

of inference algorithms for UPINs and can be considerably less e�cient ([219]).

4.4 Dynamic Probabilistic Independence Networks (Dyn-

PINs)

In time series modeling, we observe the values of certain variables at di�erent instants of

time. The assumption that an event can cause another event in the future, but not vice-

versa, simpli�es the design of DPINs for time series: directed arcs should 
ow forward in

time. Assigning a time index t to each variable, one of the simplest causal models for

a sequence of observed data O = o1; o2; : : : ; oT�1; oT is a �rst order Markov Model, or

MM(1; 1), in which each variable is directly in
uenced only by the previous variable (see

�gure 4-6):

P (o1; o2; : : : ; oT�1; oT) = P (o1)P (o2jo1) : : :P (oT�1joT ) (4:4)

O O O...
T321O

Figure 4-6: A dynamic graphical model representing a �rst-order Markov process
MM(1; 1)

These models do not represent direct dependencies between observables over more than

one time step. Having observed O = o1; o2; : : : ; ot�1; ot the model will only make use of

ot to predict the value of ot+1. One simple way of adding more memory to the system is

by allowing higher order interactions between variables. For example a rth order Markov

model allows arcs from O = ot�r; : : : ; ot�1 to ot. Another way to extend simple Markov
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models is by making the observations depend on a hidden variable H , which we will call

the state variable, and making the sequence of states be a Markov process (see �gure 4-7).

A classic model of this kind is the linear-Gaussian state-space model, also known as the

Kalman �lter.

4.4.1 DynPINs for Kalman Filters

I have brie
y described Kalman Filters in section 3.2 of chapter 3, as one of the elements

of the perceptual (bottom-most) level of the proposed human behavior model. For com-

pleteness, I will present in this section Kalman Filters from the perspective of dynamic

graphical models. In a state-space model the sequence of D-dimensional real-valued T ob-

servation vectors O = o1; o2; : : : ; oT�1; oT , is modeled by assuming that at each time step

ot was generated from a K-dimensional real-valued hidden state variable Ht, and that the

sequence of H = h1; h2; : : : ; hT de�ne a �rst-order Markov process. See �gure 4-7 for the

graph structure of such models.

S ...

T=NT=N-1T=2

O

T=1

Figure 4-7: Graphical representation of a state-space model

The well known simple �rst order state-space model obeys the following two conditional

independence relations:

Ht ? H1; O1; : : : ; Ht�2; Ot�2; Ot�1jHt�1; 2 � t � T (4.5)

Ot ? H1; O1; : : : ; Ht�1; Ot�1jHt; 2 � t � T (4.6)

Therefore the joint probability distribution P (Ot; Ht) is given by

P (Ot; Ht) = P (H1)P (O1jH1)
TY
t=2

P (HtjHt�1)P (OtjHt) (4:7)

In the case of Kalman �lters, the state transition function that provides Ht given Ht�1
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can be decomposed into deterministic and stochastic components:

Ht = ft(Ht�1) + wt (4:8)

where ft is the deterministic transition function to obtain the mean of Ht given Ht�1,

and wt is a zero-mean random noise vector. Similarly the the continuous observation vector

Ot is given by:

Ot = gt(Ht) + vt (4:9)

If both transition ft and output gt functions are linear and time-invariant and the

distribution of the states and observation noise variables is Gaussian, the model becomes a

linear-Gaussian state-space model, more commonly known as Kalman �lter:

Ht = AHt�1 + wt (4.10)

Ot = CHt + vt (4.11)

where A is the state transition matrix and C is the observation matrix.

Often the observations are divided into a set of predictor or input variables Ut and

output or response variables, leading to input-output models. Again, assuming linearity and

Gaussian noise we can write the state transition function as

Ht = AHt�1 + BUt + wt (4:12)

4.4.2 DynPINs for Hidden Markov Models (HMM(1,1))

As I have already stated, dynamic graphical models lie at the heart of the upper-most layer

in the human behavior model proposed in this thesis (see �gure 4-1). Hidden Markov Mod-

els (HMMs) and extensions (CHMMs) decompose the behaviors in a sequence of discrete,

non-observed states (which could be mapped the mental state of the human performing

the action) with probabilistic transitions between states and observations. Note that the

observations at the upper-most level are the predictions of the Kalman Filter from the pre-

vious (bottom-most) level. This section describes HMMs from the perspective of dynamic

graphical models.

In Hidden Markov (HMMs) modeling problems ([196]) we are interested in the set
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of random variables U = H1; O1; H2; O2; : : : ; HT�1; OT�1; HT ; OT , where Ht is a discrete

valued hidden variable at index t, and Ot is the corresponding continous or discrete-valued

observed variable at index t, 1 � t � T (the results here can be directly extended to

continuous-valued observables). The index i denotes a sequence from 1 to T , for example,

discrete time steps. Note that Ot is considered univariate for convenience: the extension

to the multivariate case, with d observables is straightforward but it is omitted here for

simplicity since it does not a�ect the conditional independence relationships in the HMM.

The well known simple �rst order HMM obeys the following two conditional indepen-

dence relations1:

Ht ? H1; O1; : : : ; Ht�2; Ot�2; Ot�1jHt�1; 2 � t � N (4.13)

Ot ? H1; O1; : : : ; Ht�1; Ot�1jHt; 2 � t � N (4.14)

We will refer to this "�rst-order" hidden Markov probability model as HMM(1; 1): the

notation HMM(K; J) is de�ned such that the model has state memory of depth K and

contains J separate underlying state processes. The notation will be clearer in later sections

when I will discuss extensions to the HMM(1; 1), such as Coupled Hidden Markov Models

(CHMM) that, under this notation, become HMM(1; 2).

Construction of a PIN for HMM(1; 1) is particularly simple. In the undirected case,

assumption 1 requires that each state Ht is only connected to Ht�1 from the set fH1; O1;

: : : ; Ht�2; Ot�2; Ot�1g. Assumption 2 requires thatOi is only connected toHt. The resulting

UPIN structure for HMM(1; 1) is shown in �gure 4-8. This graph is singly-connected

and thus implies a decomposable probability model p for HMM(1; 1), where the cliques

are of the form fHt; Otg and fHt�1; Htg. In section 4.5 the joint probability distribution

is expressed as a product function in the junction tree, thus leading to a junction tree

de�nition of the familiar forward-backward (Baum-Welch) and Viterbi inference algorithms.

The junction tree for a HMM(1; 1) is depicted in �gure 4-8 (b).

In the directed case the connectivity for the DPIN structure is the same. It is natural

to choose the directions of the edges between Ht�1 and Ht as going from t� 1 to t because

time goes forward and not backwards. The reverse direction could also be chosen without

1Note that these two conditions are identical to the already given in equation 4.5 for a state-space model,
as expected, because the graph structure is identical in both cases.
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changing the Markov properties of the graph, but violating the causality principle of phys-

ical systems. The directions on the edges between the hidden state variables Ht and the

observables Ot must be chosen as going from Ht to Ot rather than in the reverse direction

(see �gure 4-9, (a)). If the reverse arrows were chosen (as shown in �gure 4-9, (b)) it would

imply that Ot is marginally independent of Ht�1 which is not true in the HMM(1; 1) prob-

ability model. The proper direction of the edges implies the correct relation, namely that

Ot is conditionally independent of Ht�1 given Ht. The log probability of the model (hidden

and observed nodes) is given by:

log P (Ot; Ht) = log P (H1) +
TX
t=1

logP (OtjHt) +
TX
t=1

logP (HtjHt�1) (4:15)

S ...

T=NT=N-1T=2

O

T=1 t

Ht

Ht

t OH

Ht-2 Ht-1

t-1

t-1OHt-1

H

H Htt-1t-1Ht-1
H Ht

(a) (b)

Figure 4-8: (a) A UPIN for a single process, 1st order HMM, HMM(1; 1). (b) The
corresponding junction tree.

S ...

T=NT=N-1T=2

O

T=1

S ...

T=NT=N-1T=2

O

T=1

(a) (b)

Figure 4-9: (a) A DPIN structure for the HMM(1; 1) probability model, (b) a
DPIN structure which is not a DPIN for the HMM(1; 1) probability model

The DPIN structure for HMM(1; 1) does not possess a subgraph with non adjacent

parents. As stated earlier this implies that the independence properties of the DPIN struc-

ture are the same as those of the corresponding UPIN structure obtained by dropping the

directions from the edges in the DPIN structure, and thus they both result in the same

junction tree structure (see �gure 4-8, (b)). Thus, for the HMM(1; 1) probability model,
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the minimal directed and undirected graphs possess the same Markov properties, i.e. imply

the same conditional independence relations. Furthermore, both PIN structures are perfect

maps for the directed and undirected cases respectively.

4.5 Inference and MAP algorithms for DPINs

Inference and MAP algorithms for DPINs and UPINs are quite similar. In the case of UPINs

some subtleties are involved that are not encountered in DPINs. All the graphical models

employed in this thesis are dynamic DPINs (DynPINs). Therefore I will only describe one

of the inference algorithms for DPINs. In particular, I will present the algorithm developed

by Jensen, Lauritzen and Olesen [108] that I will refer to as the JLO algorithm hereon. The

original JLO algorithm applies to discrete variables. However extensions for Gaussian and

Gaussian-mixture distributions are discussed in Lauritzen and Spiegelhalter [138]. There is

also a closely related algorithm to the JLO algorithm solves the MAP identi�cation problem

with the same complexity as the original JLO inference algorithm ([56]). It is the so called

Dawid's propagation algorithm and it is described in section 4.8.

The JLO algorithm is a strict generalization of the well-known forward-backward and

Viterbi algorithms for HMM(1,1) in that they can be applied to arbitrarily complex graph

structures (and thus a large family of probabilistic graphical models beyond HMM(1; 1))

and can handle missing data and partial inference in a straightforward manner.

There are many variations of the original JLO algorithm. For example, Pearl ([179])

describes related versions of these algorithms in his early work. It can be shown ([219]) that

all known exact algorithms for inference on DPINs are equivalent at some level to the JLO

algorithm.

The JLO algorithm consists of two steps:

1. Construction Step: It involves a series of sub-steps where the original graph is mor-

alized and triangulated, a junction tree is formed, and the junction tree is initialized.

2. Propagation Step: The junction tree is used in a local message-passing manner

to propagate the e�ects of observed evidence, i.e. to solve the inference and MAP

problems.

The construction step needs to be carried out just once per graph. The propagation

step is carried out every time a new inference for the given graph is requested.
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The Construction Step for the JLO Algorithm: from DPIN Structures to Junc-

tion Trees The goal of the construction step is to build a junction tree (JT) from the

DPIN structure. The construction step is composed of two sub-steps: (1) �rst the original

graph is moralized giving a moral graph GM (�gure 4-10 (b)); (2) second the moral graph is

triangulated to obtain a decomposable cover GT (�gure 4-10 (c)). The algorithm operates

in a greedy manner based on the fact that a graph is triangulated if and only if all of its

nodes can be eliminated, where a node can be eliminated whenever all of its neighbors

are pairwise linked. Whenever a node is eliminated, it and its neighbors de�ne a clique in

the JT that is eventually constructed. Thus, we can triangulate a graph and generate the

cliques for the JT by eliminating nodes in some order, adding links if necessary. If no node

can be eliminated without adding links, then we choose the node that can be eliminated by

adding the links that yield the clique with the smallest state-space ([109]). Note that the

time complexity of the JLO algorithm for a junction tree with NC cliques and s(Ci) states

in the joint state-space clique Ci (i.e. the product over each variable in Ci of the number of

states of each variable) is O(
PNC

i=1 s(Ci)). Therefore the most e�cient inference corresponds

to the JT with the smallest cliques. (3) After triangulation the JLO algorithm constructs

a JT from GT , i.e. a clique tree satisfying the running intersection property. The JT con-

struction goes as follows: de�ne the weight of a link between two cliques as the number of

variables in their intersection. Then, a tree of cliques will satisfy the running intersection

property if and only if it is a spanning tree of maximal weight. Thus, the JLO algorithm

constructs a JT by choosing successively a link of maximal weight unless it creates a cycle.

The JT constructed from the cliques de�ned by the DPIN structure triangulation in �gure

4-10 (c) is shown if �gure 4-10 (d).
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(a) (b)

(c) (d)

Figure 4-10: (a) A DPIN structure GD. (b) The moral graph GM for GD, where
the parents of every node have been linked. (c) The triangulated graph GT where
the nodes have been linked to satisfy the running intersection property. (d) The
corresponding junction tree (JT).
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In a graph with N nodes, the worst-case complexity is O(N3) for the triangulation

heuristic and O(N2logN) for the maximal spanning tree portion of the algorithm. This

construction step is carried out only once as an initial step to convert the original graph to

a JT representation.

Potential Functions in the Junction Tree The next step is to take the numeric

probability speci�cations as de�ned on the directed graph GD (given by equation 4.3) and

convert this information into the general form for a JT representation of p (see equation

4.1). This is achieved by noting that each variable Xi is contained in at least one clique

in the JT. The procedure thus is as follows: assign each Xi to just one such clique and for

each clique de�ne the potential function aC(C) to be either the product of p(Xijpa(Xi)) or

1 if not variables are assigned to that clique. The initial values of the separator potentials

in equation 4.1 are set to 1.

A schedule of local message passing can be de�ned which converges to a globally con-

sistent marginal representation for p, i.e. the potential on any clique or separator is the

marginal for that clique or separator. Thus, via local message passing, one can go from the

initial potential representation de�ned above to a marginal representation:

p(u) =

Q
C2VC

p(xC)Q
S2VS

p(xS)
(4:16)

Once these calculations are �nished the JT is initialized. The most interesting cal-

culation, however, is the ability to propagate information through the graph given some

observed data and the initialized JT, e.g. to calculate the posterior probabilities of some

variables of interest.

Local Message Propagation in Junction Trees using the JLO Algorithm In

general p(U) can be expressed as

p(u) =

Q
C2VC

aC(xC)Q
S2VS

bS(xS)
(4:17)

where the aC and bS are non-negative potential functions (the potential functions could

be the initial marginals described above, for example). K = (aC : C 2 VC ; bS : S 2 SC) is a

representation for p(U). A factorizable function p(U) can admit many di�erent representa-
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tions, i.e. many di�erent sets of clique and separator functions which satisfy equation 4.17

given a particular p(U).

The JLO algorithm carries out globally consistent probability calculations via local

message-passing on the JT, i.e. probability information is passed between neighboring

cliques and clique and separator potentials are updated based on this local information.

Cliques and separators are updated such that K is at all times a representation for p(U),

i.e. equation 4.17 holds at all times. Eventually the propagation converges to the marginal

representation given the initial model and the observed evidence.

The message passing proceeds as follows: given two adjacent cliques Ci and Cj and

given Sk the separator between them, we de�ne

b�Sk(xSk) =
X
CinSk

aCi(xCi) (4:18)

and

a�Cj(xCj ) = aCj(xCj)�Sk(xSk) (4:19)

where

�Sk(xSk ) =
b�Sk(xSk)

bSk(xSk)
(4:20)

with �Sk(xSk) being the update factor. Passage of a 
ow corresponds to updating the

neighboring clique with the probability information contained in the originating clique and it

is illustrated in �gure 4-11. This 
ow induces a new representationK� = (a�C : C 2 VC ; b�S : S 2 SC)

for p(U).

Cj

Sk

Sk

λ

Cja*   (X  )

 *   (X  )

b*   (X  )

Sk

Sk

k ji S CC

Figure 4-11: Message passing algorithm from clique Ci to clique Cj via the sepa-
rator Sk

A schedule for the message passing 
ow can be de�ned such that all the cliques are

eventually updated with all relevant information and JT tree reaches an equilibrium state.

The most direct scheduling scheme consists of two steps: one node of the tree is de�ned as
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the root of the JT. During the collection phase the messages 
ow along all edges towards the

root clique (if a node has more than one incoming 
ow, the 
ows are absorbed sequentially).

After the collection is completed, the distribution phase involves passing messages from the

root to the rest of the nodes in the JT along the same edges. There are at most two 
ows

along any edge in the tree in a non-redundant schedule. The directionality of the message

passing 
ow in the JT does not have to coincide in principle with the edge directionality in

the original DPIN structure.

The JLO Algorithm for Inference given Observed Evidence In the case of ob-

serving some evidence, i.e. the value of some variables in the graphical model, one needs to

update the marginal probabilities of all nodes in the JT to incorporate this new evidence.

Consider that we observe evidence e = fXi = x�i ; Xj = x�j ; : : :g and U e = fXi; Xj; : : :g

denotes the set of variables that have been observed. Let Uh = U , with Uh denote the set

of hidden or unobserved variables and uh a value assignment for the hidden nodes Uh.

To compute the posterior probability of the hidden nodes given the observations, p(Uhje)

we de�ne an evidence function ge(xi) such that

ge(xi) =

8><
>:

1 if xi = x�i

0 otherwise
(4:21)

Instead of directly computing p(Uhje) we compute f�(u) / p(uhje), given by

f�(u) = p(u)
Y
Ue

ge(xi) (4:22)

The steps to obtain f�(u) from the message passing algorithm are: (1) Entering evidence

into the cliques, by assigning each observed variable Xi 2 U e to one particular clique that

contains it. We CE denote the set of all cliques into which evidence is entered in this manner.

(2) For each C 2 CE we compute gC(xC) =
Q

fi:Xi is entered into Cg g
e(xi). (3) f�(u) =

p(u) �
Q
C2CE gC(xC). The e�ects of these modi�cations can be propagated throughout

the JT using the collect and distribute schedule. The xhC denote a value assignment of the

hidden (unobserved) variables in clique C. Once the message passing is �nished, a new �nal

representation K�
f is obtained such that the local potential on each clique {or separator{

is f�(xC) = p(xhC ; e), i.e. the joint probability of the local unobserved clique variables and
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the introduced evidence ([108]).

The probability of the observed evidence p(e) is given by p(e) =
P

Xh
C
p(xhC ; e). The

conditional probability of the local unobserved clique variables given the evidence, p(xhC je)

is the normalized to 1 potential function at the clique where the hidden variable belongs to.

Complexity of the Message Passing Algorithm The time complexity of propagation

within a junction tree is O(
PNC

i=1 s(Ci)) where NC is the number of cliques in the juntion

tree and s(Ci) is the number of states in the joint state-space clique Ci, i.e. the product over

each variable in Ci of the number of states of each variable. Therefore the most e�cient

inference corresponds to the JT with the smallest cliques. Unfortunately the problem of

�nding optimally small junction trees (i.e. JTs with the smallest maximal clique) is NP-

hard. Heuristic algorithms have been found to perform well in practice ([108], [109]).

4.6 Inference and MAP problems in HMMs

Starting from a generative model of the data {a prior model{, the learning problem consists

of estimating the parameters of the model that best �t the observed data O. This �t is

generally measured by the likelihood of the data given the parameters �, i.e. L(Oj�), which

can be maximized as a function of the parameters. Bayesian approaches extend this infer-

ence process by incorporating a prior distribution over the parameters p(�) and requiring

that the result of the learning process be a posterior distribution on the parameters.

An equivalent approach can be derived using information theory [49]. In this case, the

goal of the learner is to communicate the data as e�cient as possible to the receiver, thereby

producing a compact {compressed{ representation of the data. A cost function quantifying

the e�ciency of this communication process can be derived from the Minimum Description

Length (MDL) principle ([116]). Using Shannon's coding theorem, the MDL cost function

can be shown to be equal to the posterior probability of the parameters given the data.

Data Maximum Likelihood: In the context of HMMs, the most common inference

problem is the calculation of the likelihood of the observed evidence given the model,

i.e. P (o1; o2; : : : ; oT jM), where o1; o2; : : : ; oT denote the observed values for the vari-

ables O1; O2; : : : ; OT . Again, in this section, I will assume that only one model, M ,

{the ML model{ has been selected and therefore a structure and parameters have been
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determined. Thus I will omit the conditioning on the model M hereon. The direct

method for obtaining the previous probability would be to sum out the unobserved

state variables from the full joint probability distribution:

p(o1; o2; : : : ; oT ) =
X

h1;:::;hT

p(H1; o1; : : : ; HT ; oT ) (4:23)

where ht denotes the possible values of the hidden variable Ht.

State Posterior: Another inference calculation of interest is the calculation of P (ht =

sijo1; o2; : : : ; oT ), for any or all i, namely the probability of a particular hidden state

value given the observed evidence. Inferring the posterior state probabilities is useful

when the states have direct physical interpretations (as in fault monitoring applica-

tions [226]) and is also implicitly required during the standard Baum-Welch learning

algorithm for HMM(1; 1) (see section 4.6 for a detailed description). The states in

the behavior models developed in this thesis seem to correspond to sub-actions that

compose a longer behavior. They could be related to the non-observed mental states

of the human performing the action. As chapter 2 has stated, a similar explanation

of human behavior has been proposed in Psychology and Philosophy.

In general both of these calculations scale as NT where N is the number of states for each

hidden variable. In practice, the forward-backward algorithm ([196], [192]) can perform

these inference calculations with much lower complexity, namely TN2, by using dynamic

programming. The likelihood of the observed evidence can be obtained with the forward

step of the forward-backward algorithm; calculation of the state posterior probabilities

requires both the forward and backward steps. The forward-backward algorithm relies on

a factorization of the joint probability distribution to obtain locally recursive methods.

One important aspect of the graphical modeling approach is that it provides an automatic

method for determining such local e�cient factorizations, for an arbitrary probabilistic

model, if e�cient factorizations exist given the conditional independence relations speci�ed

in the model.

The MAP identi�cation problem in the context of HMMs involves identifying the most

likely hidden state sequence given the observed evidence. Just as with the inference prob-

lem, the Viterbi algorithm provides an e�cient, locally recursive method for solving this

problem with complexity TN2. In the same way as with the inference problem, the graphical
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modeling approach provides an automatic technique for determining e�cient solutions to

the MAP problem for arbitrary models, if an e�cient solution is possible given the structure

of the model.

The Baum-Welch Algorithm as a Special Case of the JLO Algorithm The JT for

a standard simple HMM, HMM(1,1), is depicted in �gure 4-12. Usually dynamic graphical

models are represented "rolled out" in time. Each hidden clique in the JT (e.g. (Ht�1; Ht)

in �gure 4-12) contains the hidden states at consecutive points in time. Traditionally the

Baum-Welch or Forward-Backward algorithm ([196]) are used for doing inference in the

model. The inference problem consists of, given a set of values for the observable variables,

e = O1 = o1; O2 = o2; : : : ; OT = oT (4:24)

inferring the likelihood of the evidence e given the model. This problem can be exactly

solved by local propagation in any JT using the JLO inference algorithm.

Ot-1 t

H

t-1

t-1

O

t+1

t-1H H t

t-2 H t H t Ht-1 t-1

H H

HH H
t

t

H

Figure 4-12: Local message passing in a standard single HMM, HMM(1,1) JT
during the collect phase on a "left to right" schedule. Ovals represent cliques and
squares separators. Arrows indicate the message 
ow.

First we have to select a root clique in the JT. Let the last clique, (HT�1; HT ) be the root

clique. A non redundant message passing schedule consists of (1) collect step: recursively

passing messages from each observation clique, (Ot; Ht), and previous hidden state clique,

(Hi�2; Hi�1), to the current hidden state clique, (Hi�1; Hi), in the appropriate sequence

until reaching the root (last) clique. This is the forward step of the traditional Forward-

Backward algorithm; (2) propagate step: distributing messages in the reverse direction

from the root clique to the �rst clique, i.e. the backward step of the Forward-Backward

algorithm. If we were interested in computing the likelihood of the evidence e given the
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model, p(ejO;M), the distribute or backward step is not needed since we can marginalize

over the local variables in the root clique to obtain p(e).

In the following subscripts on potential functions f�(ht) and update factors �(ht) indi-

cate which variables have been used in deriving that potential or update factor, e.g. fO1

indicates that this potential has been updated based on information exclusively about O1

and no other variable.

1. Collection Step: Forward Step Let's assume that the JT has been initialized so

that the potential function in each clique and separator is the local marginal. Given some

observed evidence e, each individual observation, O = o�t is entered into each observation

clique (Ot; Ht) such that each clique marginal becomes f�Ot
(ht; ot) = p(ht; o�t ) after entering

evidence.

Looking at �gure 4-12, the potential on the separator Ht is updated, by de�nition, to

f�Ot
(ht) =

X
ot

f�(ht; ot) = p(ht; o
�
t ) (4:25)

The update factor from this separator 
owing into its adjacent clique (Ht�1; Ht) is then

given by

�Ot(ht) =
p(ht; o�t )

p(ht)
= p(o�t jht) (4:26)

This update factor is incorporated into (Ht�1; Ht) through

f�Ot
(ht�1; ht) = p(ht�1; ht)�Ot(ht) = p(ht�1; ht)p(o

�
t jht) (4:27)

Now consider the message 
ow from clique (Ht�2; Ht�1) to clique (Ht�1; Ht). Let �t;k =

Ot; : : : ; Ok denote the set of consecutive observable variables, and ��
t;k = o�t ; : : : ; o

�
k denote

the set of observed values for these variables (evidence), 1 � t < k � T . Assume that the

potential on the separator Ht�1 has been updated to

f��1;t�1
(ht�1 = sj) = f�j;�1;t�1

= p�(ht�1 = sj ;�
�
1;t�1) (4:28)

because of the earlier 
ows in the schedule. Therefore the update factor on separator Ht�1
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becomes

��1;t�1(ht�1 = sj) = �j;�1;t�1 =
p�(ht�1 = sj ;�

�
1;t�1)

p(ht�1 = sj)
(4:29)

where the hidden node ht�1 is assumed to be in state sj , 1 � j � N .

This gets absorbed into clique (Ht�1; Ht) to produce

f��1;t
(ht�1; ht) = p�Ot

(ht�1; ht)��1;t�1(ht�1) (4.30)

p(ht�1; ht)p(o
�
t jht)

p�(ht�1;�
�
1;t�1)

p(ht�1)
(4.31)

p(o�t jht)p(htjht�1)p
�(ht�1;�

�
1;t�1) (4.32)

Finally, we can calculate the new potential on the separator for the 
ow from clique

(Ht�1; Ht) to (Ht; Ht+1),

f��1;t
(ht = sj) = f�j;�1;t

=
X
hi�1

f��1;t
(ht�1; ht) (4.33)

= p(o�t jht)
X
ht�1

p(htjht�1)p
�(ht�1;�

�
1;t�1) (4.34)

= p(o�t jht)
X
ht�1

p(htjht�1)f
�
�1;t�1

(ht�1) (4.35)

= �t(j) (4.36)

with 1 � j � N .

Equation 4.33 corresponds to the recursive equation (equation 20 in [196]) for the �t(j)

(forward) variables used in the forward step of the Forward-Backward or Baum-Welch

algorithm in HMMs. Using a "left-to-right" schedule the updated potential functions on

the separators between the hidden cliques, the f��1;t
(ht = sj) = f�j;�1;t

are exactly the �t;j

variables. Therefore the JLO algorithm applied to a standard single HMM, HMM(1,1)

produces exactly the same local recursive calculations as the forward step in the Forward-

Backward algorithm.

Dynamic Programming and State Trellis This forward step can also be seen from a

dynamic programming viewpoint. Dynamic programming allows us to collect statistics on

a exponential number of possible paths through a single HMM state trellis in polynomial

time, because evidence from all paths that share a state a time t can be combined without

loss of information. The state trellis for a single HMM is a representation of all possible state
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sequences that the HMM could go through given some evidence. Figure 4-13 depicts the

state trellis for a 3-state HMM: in a state trellis, each column corresponds to possible states

for the hidden nodes at a time slice. A path across the trellis multiplies the probabilities

associated with each traversed hidden state and transition from one hidden state to the

next one. We have seen that an HMM of time length T and with N possible states per

hidden variable has a complexity of NT possible paths. Using dynamic programming, i.e.

the forward or collect step, the NT paths can be explored by tracking only N paths "heads".

To collect statistics for estimation of the marginal probabilities of each hidden state given

the evidence (f�Ot
(ht = sj ; ot) = p(ht = sj ; o

�
t ) = pj;t), it is necessary to pass through every

state and every transition at every time slice. In consequence, dynamic programming in a

trellis of length T and width N takes O(TN2) time, which is, of course, exactly the same

complexity as that given by the JLO algorithm.

(a) Viterbi (b) p(state)

(c) p(transition)

Figure 4-13: State trellis for a single standard 3-state HMM, HMM(1,1). (a) Most
likely state path computed by the Viterbi algorithm; (b) probability of a hidden state
(= f�j;�1;t

���i;t;j = �t;j�t(j)); (c) probability of a transition from one hidden state to
another.

2. Distribution Step: Backward Step Similarly, the backward step of the Forward-

Backward algorithm corresponds to the collect step of the JLO algorithm when the root

node is the �rst node. Therefore, in case the "left-most" hidden clique in the JT, namely

(H1; H2) is the root clique. We de�ne a message passing 
ow from right to left. Figure

4-14 illustrates the message 
ow that takes place. Assume the potential in the hidden clique

(Ht; Ht+1) has already been updated by earlier messages from the right. Thus, by de�nition,

f��t+1;T (ht; ht+1) = p�(ht; ht+1;�
�
t+1;T ) (4:37)

The potential function on the separator, Ht between (Ht; Ht+1) and (Ht�1; Ht) is given
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Figure 4-14: Local message passing in a standard single HMM, HMM(1,1) JT
during the "right to left" distribution phase. Ovals represent cliques and squares
separators. Arrows indicate the message 
ow.

by

f��t+1;T
(ht = sj) = f�j;�t+1;T (4.38)

=
X
ht+1

f��t+1;T (ht; ht+1) (4.39)

=
X
ht+1

p(ht; ht+1;�
�
t+1;T ) (4.40)

= p(ht)
X
ht+1

p(ht+1jht)p(o
�
t+1jht+1)p(�

�
t+1;T jht+1) (4.41)

(by virtue of the conditional independences (4.42)

that hold for the HMM(1; 1)) (4.43)

= p(ht)
X
ht+1

p(ht+1jht)p(o
�
t+1jht+1)

p(��
t+2;T ; ht+1)

p(ht+1)
(4.44)

= p(ht)
X
ht+1

p(ht+1jht)p(o
�
t+1jht+1)

f��t+2;T (ht+1)

p(ht+1)
(4.45)

The update factor on the separator Ht yields

���t+1;T (ht = sj) = �j�t+1;T
(4.46)

=
f��t+2;T (ht=sj)

p(ht = sj)
(4.47)

=
X
ht+1

p(htjht+1)p(o
�
t+1jht+1)

f��t+2;T
(ht+1)

p(ht+1)
(4.48)

=
X
ht+1

p(htjht+1)p(o
�
t+1jht+1)�

�
�t+2;T

(ht+1) (4.49)
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The recursive formulation for the update factor ���t+1;T (ht = sj) is exactly the recursive

equation (equation 25 in [196]) for the �t(j) variables in the backward step of the Forward-

Backward algorithm. Therefore, the JLO inference algorithm is equivalent to the Forward-

Backward or Baum-Welch algorithm in traditional single HMMs, HMM(1,1), as expected.

4.7 Learning and ML Inference with Complete Data

At this point I will describe the techniques used for estimating the parameters in a graphical

model given the observed data. There is a variety of methods that could be used for

parameter estimation: from maximum-likelihood (ML), maximum-a-posteriori (MAP), or

full Bayesian methods, to more traditional techniques such as gradient descent, expectation-

maximization (EM) or Monte-Carlo sampling, or new techniques such as maximum entropy

discrimination [104].

4.7.1 Model Learning

I have previously stated that there are three basic problems that are commonly addressed

in statistical machine learning: (1) the inference problem, (2) the MAP state identi�cation

problem, and (3) the parameter estimation and model learning problems. In this section I

will review very brie
y the problem of model learning.

The observations can be used not only for parameter estimation, but also for model

selection (graph structure). One solution to this problem is the Bayesian approach. A

Bayesian approach to learning starts with some a priori knowledge about the model struc-

ture (as de�ned in 4.1) and model parameters. This initial knowledge is represented in the

form of a prior probability distribution over model structures and parameters, and updated

using the data to obtain a posterior probability distribution over models and parameters.

Formally, assuming a prior distribution over model structures P (M) and a prior distribution

over parameters for each model structure P (�jM) a data set D is used to form a posterior

distribution over models using Bayes rule

P (M jD) =

R
P (Dj�;M)P (�jM)d�P (M)

P (D)
(4:50)

which integrates out the uncertainty in the parameters. Some criteria for selecting the

model include the highest posterior probability model or the average predictions of two or
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more models weighted by their posterior probabilities.

For a given model structure, we can compute the posterior distribution over the param-

eters:

P (�jM;D) =
P (Dj�;M)P (�jM)

P (DjM)
(4:51)

If the data is a time series, i.e. a sequence of observations at consecutive instants of

time D = o1; o2; : : : ; oT�1; oT and we wish to predict the next observation, oT+1, given the

data and the models, the the Bayesian prediction

P (oT+1jD) =
Z
P (oT+1j�;M;D)P (�jM;D)P (M jD)d�dM (4:52)

integrates out the uncertainty in the model structure and parameters.

In this Bayesian approach to learning, usually we assume a single model structureM and

we estimate the parameters �̂ that maximize the likelihood P (�jM;D) under that model. In

the limit of a large data set and an uninformative (e.g. uniform) prior over the parameters,

the posterior P (�jM;D) will be sharply peaked around the maxima of the likelihood, and

therefore the predictions of a single maximum likelihood (ML) model will be similar to those

obtained by Bayesian integration over the parameters.

When there is missing data {such as hidden variables{ the exact computation of the

Bayesian integral 4.50 is usually intractable. Simple approximations to this integral exist,

such as the Bayesian Information Criterion (BIC) described in [218]:

log p(DjM) � log p(Dj�̂;M)� d=2 logN (4:53)

where �̂ is the ML estimate of the parameters, N is the number of observations and d is

the dimension of the model M {typically the number of parameters of M . The �rst term

of this "score" function rewards how well the data �ts the model M , whereas the second

term punishes model complexity. This score does not depend on the parameter prior and

thus can be applied easily. Raftery [198] applies BIC in the context of graphical and other

statistical models.

The BIC score is the additive inverse of Rissanen's [116] minimum description length

(MDL) principle. Other scores, which can be viewed as approximations to the marginal

likelihood, are hypothesis testing ([198]) and cross validation ([73]) (see section 4.7.1).
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Structural Risk Minimization [253], [252] minimizes a regularized risk functional Rreg[f ],

which is the weighted sum of the empirical risk functional Remp[f ] {given by the normalized

negative log likelihood{ and a regularization or complexity term Q[f ]

Rreg[f ] = Remp + �Q[f ] (4:54)

The regularization term Q[f ] is added to prevent over�tting. This regularizer is a convex

penalty term on some quantity related to the function to be estimated, f . Two requirements

will be imposed on Q[f ]: it has to be convex and continuous (in order not to alter the

optimization problem) and should restrict the function class in such a way that uniform

convergence bounds can be stated. In other words, one minimizes Remp[f ] while keeping

the model complexity �xed by enforcing the upper bound on the measure of complexity

{regularization term{ Q[f ]. This is what should be done when following the empirical risk

minimization principle. In [175] a new model selection method is presented that exploits

the geometry of statistical manifolds in a Structural Risk Minimization framework.

The interested reader would �nd a comprehensive review of the literature on learning

the structure of PINs in [38].

In this thesis I focus on estimating the ML parameters for a model given the model

structure. Although this is only an approximation to pure Bayesian learning, in practice

full-
edged Bayesian analysis is often impractical. Furthermore there are application areas

where there is strong a priori knowledge about the model structure and a single estimate of

the parameters provides a more parsimonious and interpretable model than a distribution

over the parameters. The technique employed in this thesis for selecting the model structure

is k-fold cross-validation.

Cross validation Cross-validation and bootstrapping are both methods for estimating

generalization error based on "resampling" ([260], [94], [187]). The resulting estimates of

generalization error are often used for choosing among various models, such as di�erent

graphical model architectures.

In k-fold cross-validation, you divide the observed {training{ data into k subsets of

(approximately) equal size. You estimate the model parameters (train) k times, each time

leaving out one of the subsets from training, but using only the omitted subset to compute

the chosen error criterion. In this thesis I use likelihood as the evaluating function. If
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k equals the sample size, this is called "leave-one-out" cross-validation. "Leave-v-out" is

a more elaborate and expensive version of cross-validation that involves leaving out all

possible subsets of v cases.

Leave-one-out cross-validation is easily confused with jackkni�ng. Both involve omitting

each training case in turn and retraining the network on the remaining subset. But cross-

validation is used to estimate generalization error, while the jackknife is used to estimate

the bias of a statistic. In the jackknife, some statistic of interest is computed in each subset

of the data. The average of these subset statistics is compared with the corresponding

statistic computed from the entire sample in order to estimate the bias of the latter. One

can also obtain a jackknife estimate of the standard error of a statistic. Jackkni�ng can

be used to estimate the bias of the training error and hence to estimate the generalization

error, but this process is more complicated than leave-one-out cross-validation [60].

Cross-validation can be used simply to estimate the generalization error of a given model,

or it can be used for model selection by choosing one of several models that has the smallest

estimated generalization error, as in the case of this thesis. For example, cross-validation

can be used to choose the dimensionality of the hidden state nodes in a HMM (number

of states), or to select a subset of the inputs (subset selection). A subset that contains all

relevant inputs will be called a "good" subset, while the subset that contains all relevant

inputs but no others will be called the "best" subset. Note that subsets are "good" and

"best" in an asymptotic sense (as the number of training cases goes to in�nity). With a

small training set, it is possible that a subset that is smaller than the "best" subset may

provide better generalization error.

Leave-one-out cross-validation often works well for estimating generalization error for

continuous error functions such as the mean squared error, but it may perform poorly for

discontinuous error functions such as the number of misclassi�ed cases. In the latter case, k-

fold cross-validation is preferred. But if k gets too small, the error estimate is pessimistically

biased because of the di�erence in training-set size between the full-sample analysis and the

cross-validation analyses. (For model-selection purposes, this bias can actually help; see

the discussion in [220].) A value of 10 for k is popular for estimating generalization error.

This is the value used in the cross validation methods of this thesis and it is referred to as

10-fold validation.

Leave-one-out cross-validation can also run into trouble with various model-selection
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methods. Again, one problem is lack of continuity {a small change in the data can cause

a large change in the model selected ([33]). For choosing subsets of inputs in linear regres-

sion, [34] found 10-fold and 5-fold cross-validation to work better than leave-one-out. [125]

also obtained good results for 10-fold cross-validation with empirical decision trees (C4.5).

Values of k as small as 5 or even 2 may work even better if you analyze several di�erent

random k-way splits of the data to reduce the variability of the cross-validation estimate.

Leave-one-out cross-validation also has more subtle de�ciencies for model selection.

[221] shows that in linear models, leave-one-out cross-validation is asymptotically equivalent

to Akaike's Information criterion (AIC), but leave-v-out cross-validation is asymptotically

equivalent to Schwarz's Bayesian criterion (called SBC or BIC) when v = N [1� 1
(log(N)�1) ],

where N is the number of training cases. BIC provides consistent subset-selection, while

AIC does not. That is, BIC will choose the "best" subset with probability approaching one

as the size of the training set goes to in�nity. AIC has an asymptotic probability of one of

choosing a "good" subset, but less than one of choosing the "best" subset ([236]). Many

simulation studies have also found that AIC over�ts badly in small samples, and that BIC

works well (e.g., [99], [222]). Hence, these results suggest that leave-one-out cross-validation

should over�t in small samples, but leave-v-out cross-validation with appropriate v should

do better. However, when true models have an in�nite number of parameters, BIC is not

e�cient, and other criteria that are asymptotically e�cient but not consistent for model

selection may produce better generalization.

4.7.2 ML Estimation with Complete Data

Given a set of independend and identically distributed (i.i.d.) observations D = o1; : : : ; oT ,

each of which can be a vector or time series of vectors, then the likelihood of this data set

is:

P (Dj�;M) =
TY
t=1

P (otj�;M) (4:55)

For convenience in the notation I will drop from now on the implicit conditioning on the

model structure, M . The ML parameters are obtained by maximizig the likelihood, or

equivalently the log likelihood:

L(�) =
TX
t=1

logP (otj�) (4:56)
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If the observations include all the variables (nodes) in the graphical model, then each

term in the log likelihood further factors as:

logP (Otj�) = log
Y
j

P (Ot;jjOt;pa(j); �j) =
X
j

logP (Ot;jjOt;pa(j); �j); (4:57)

where j indexes over the nodes in the graphical model, pa(j) is the set of parents of node

j, and �j are the parameters that de�ne the conditional probability of Ot given its parents.

The likelihood therefore decouples into local terms involving only each node and its parents,

greately simplifying the ML estimation problem. For example, if the O variables are discrete

and �j is the conditional probability table (CPT) for Oj given its parents, then the ML

estimate of �j is simply a normalized table containing counts of each setting of Oj given

each setting of its parents in the set.

4.7.3 ML Estimation with Incomplete Data via the EM Algorithm

When there are hidden variables in the graphical structure {i.e. unobserved nodes, such as

the hidden states in a HMM{ the log likelihood cannot be decomposed as in equation 4.57.

Instead we have to marginalize the log likelihood by summing over all the hidden nodes:

L(�) = logP (Otj�) = log
X
Ht

P (Ot; Htj�) (4:58)

with 1 � t � T and where Ht is the set of hidden variables, and
P

Ht
is the sum {or

integral in the continuous case{ over Ht required to obtain the marginal probability of the

data. Because equation 4.58 cannot be computed directly, we will lower bound it by a

computationally feasible bound. This is the essence of the Expectation-Maximization EM

algorithm ([57]). Using any distribution Q over the hidden nodes we obtain a lower bound

for L2:

log
X
H

P (O;H j�) = log
X
H

Q(H)
P (O;H j�)

Q(H)
(4.59)

�
X
H

Q(H)log
P (O;Hj�)

Q(H)
(4.60)

=
X
H

Q(H)logP (O;Hj�)�
X
H

Q(H)logQ(H) = (4.61)

2Note that it is a variational bound. For more details see [114]
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= �F(Q; �) (4.62)

where the inequality is known as Jensen's inequality and can be proven using the con-

cavity of the log function. If we de�ne the energy E of a global con�guration (H;O) to

be �logP (H;Oj�), then F in equation 4.62 is what is known in statistical physics as the

free energy: F(Q; �) =< E(Q; �) >p �H(Q), i.e. the expected energy under Q minus the

entropy of Q [162]. The EM algorithm alternates between maximizing F with respect to

Q and � respectively, while holding the other �xed. Starting from some initial parameters

�0:

E step: Calculate the probabilities of the hidden variables H given the observed variables

O. This is the inference problem.

Qk+1  argmax
Q

F(Q; �k) (4:63)

M step: Parameter estimation for a fully observed graph, assuming that the hidden

variables H have the values estimated in the E step.

�k+1  argmax
�

F(Qk+1; �) (4:64)

The maximum in the E step results when Qk+1(H) = P (H jO; �k), at which points the

bound becomes an equality: F(Qk+1; �k) = L(�k). The maximum in theM step is obtained

by maximizing the expected energy under Q in expression 4.61, because the entropy H(Q)

does not depend on the parameters �. Therefore the M step can be written as:

M step:

�k+1  argmax
�

X
H

P (H jO; �k)logP (H;Oj�) (4:65)

This is the expression most often associated with the EM algorithm. The EM algorithm

performs a coordinate ascent in F . Since F = L at the beginning of each M step and

because the E step does not change the parameters �, we are guaranteed not to decrease

the likelihood after each combined EM step. An important aspect of the application of the

EM algorithm to parameter estimation in PINs is that the JLO algorithm can be used to

perform the E step.
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Usually it is not necessary to evaluate the posterior distribution P (H jO; �k). Since the

joint distribution P (H;Oj�k) contains both hidden and observed variables in the graph, it

can be factored as before as the sum of log probabilities of each node given its parents.

Consequently, the quantities required for the M step are the expected values under the

posterior distribution P (H jO; �k) of the analogous quantities required for ML estimation

in the complete data case.

EM for PINs Without loss of generality and for illustration purposes, let us consider

the case when all variables are discrete. Let xk and pa(X)j denote the kth state of variable

X and the jth state of variables pa(X), respectively. Let assume that we have a directed

PIN model M with mutually independent parameters � =
S
jkf�Hjk

; �Ojk
g, where �Hjk

=

p(hki jpa(Hi)j ;M) and �Ojk
= p(oki jpa(Oi)j ;M) 8i. In addition, let assume that we have

observed data D = fe1; e2; : : : ; eTg, an (iid) random sample from the true distribution.

The EM algorithm �nds a local maximum of the likelihood p(Dj�;M) by initializing

the parameters � (randomly, via some clustering algorithm or exploiting prior knowledge)

and iterating between the E and the M steps.

E step: Compute the su�cient statistic for each of the parameters, given the data D and

the current values of �. Let SHjk
be the su�cient statistic for �Hjk

. The expected

su�cient statistic E(SHjk
jD; �;M) is given by:

E(SHjk
jD; �;M) =

SX
l=1

X
i

p(hki ; pa(Hi)
j jel; �;M) (4:66)

Note that each term in the sum can be computed using the JLO algorithm. The

expected su�cient statistic for �Ojk
, SOjk

can be computed similarly.

M step: We use the expected su�cient statistics as if they were the actual su�cient

statistics, and set the new values of the parameters � to those that maximize the

likelihood of these statistics:

�Hjk
=

E(SHjk
jD; �;M)P

lE(SHjl
jD; �;M)

�Ojk
=

E(SOjk
jD; �;M)P

lE(SOjl
jD; �;M)

(4.67)

I would like to come back at this point to the three basic problems commonly addressed

in statistical machine learning: (1) the inference problem, (2) the MAP state identi�cation

122



problem, and (3) the parameter estimation and model learning problems. In the following

sections I will describe the problem of parameter estimation in state-space models, Kalman

�lters and HMMs.

4.7.4 Parameter Estimation in State-space Models

Using equation 4.7 the log-likelihood, L, can be written as:

log P (Ot; Ht) = log P (H1) +
TX
t=2

logP (HtjHt�1) +
TX
t=1

log P (OtjHt) (4:68)

Because each of the probability densities is Gaussian the overall expression is a sum of

quadratic forms. For example,

logP (OtjHt) = �1=2(Ot� CHt)
0R�1(Ot � CHt)� 1=2jRj+ const (4:69)

where R is the covariance of the observation noise vt; ' denotes the matrix transpose, and

j � j is the matrix determinant.

Due to the hidden nodes, we cannot directly compute the ML parameters. Applying

the EM algorithm, in the E step we compute the expected values of some quantity f(H)

with respect to the posterior P (H jO; �k):

< f(H) >=
Z
H
f(H)P (H jO; �k)dH (4:70)

Finally the M step maximizes 4.68 with respect to the parameters. For example, in the

case of the matrix C, the ML estimate would be:

C  (
X
t

Ot < Ht >
0)(
X
t

< HtH
0
t >)

�1 (4:71)

Similar M steps can be derived for all the other parameters by taking derivatives of the

expected log probability [80]. The expected terms < Ht >, < Ht; H
0
t > and < Ht; H

0
t�1 >

can be computed by Kalman smoothing, described in the following section.
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4.7.5 Kalman smoothing

In a similar derivation as the one for HMM(1,1), the Forward-Backward recursion of the

traditional Kalman smoother can be interpreted as a particular case of the JLO inference

algorithm. The Kalman smoother solves the problem of estimating the state at time t of

a linear-Gaussian state-space model given the model parameters and a sequence of obser-

vations O = O1; O2; : : : ; OT . It consists of two parts: the forward recursion, where the

message passing 
ow goes from "left to right", i.e. from Ht to Ht+1. It is known as the

Kalman Filter [117]; and the backward recursion, with the messages 
owing from "right to

left", i.e. from Ht+1 to Ht [202].

The Gaussian marginal density of the hidden state nodes is completely speci�ed by its

mean and covariance matrix. We de�ne < H�
t > and V �

t =< H�
t ; Ht

� 0 > as the mean

and covariance of the hidden Gaussian state node Ht, respectively, given observations O =

O1; O2; : : : ; O� . The Kalman �lter, thus, (forward or "left to right" recursion) consists of

the following computations:

< H t�1
t > = A < H t�1

t�1 > (4.72)

V t�1
t = AV t�1

t�1 A
0 +Q (4.73)

Kt = V t�1
t C0(CV t�1

t C0 +R)�1 (4.74)

< H t
t > = < H t�1

t > +Kt(Ot � C < H t�1
t >) (4.75)

V t
t = V t�1

t �KtCV
t�1
t (4.76)

with < H0
1 > and V 0

1 the prior (initial) mean and covariance of the hidden state.

Equations 4.72 and 4.73 de�ne the forward recursion (collect step in the JLO algorithm)

of the state mean and covariance before having entered evidence for the observed node at

time t. The mean evolves according to the dynamics given by the matrix A {which is the

equivalent to the transition probability matrix in HMM(1,1){. In the case of the Kalman

Filter, however, the state dynamics is assumed to be known. The matrix A also a�ects the

variance, which increases with the variance Q of the state noise. The observation Ot shifts

the mean by an amount proportional to the prediction error Ot � C < H t�1
t >, where the

proportionality term Kt is known as the Kalman Gain Matrix. Note that introducing the

evidence at time t, Ot, has the e�ect of e�ectively reducing the hidden state variance V t
t .
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These equations are direct results of the JLO algorithm when the integral Gaussians are

analytically evaluated in the message passing algorithm.

Similarly, once evidence is introduced on a "left to right" schedule, one obtains < HT
T >

and V T
T . The backward step (distribute step in the JLO algorithm) proceeds on a "right to

left" manner, evaluating the in
uence of future observations on the estimates of the hidden

states in the past:

Jt = V t
t A

0(V t
t+1)

�1 (4.77)

< HT
t > = < H t

t > +Jt(< HT
t+1 > �A < H t

t >) (4.78)

V T
t = V T

t + Jt(V
T
t+1 � V t

t+1)J
0
t (4.79)

where Jt is the backward matrix gain, with a similar role to the Kalman gain matrix.

Again the estimated hidden state mean < HT
t > is shifted by a quantity proportional to

the backward prediction error < HT
t+1 > �A < H t

t >.

The expectations required for applying the EM algorithm are given by:

< Ht > = < HT
t > (4.80)

< HtH
0
t > = < HT

t >< HT 0

t > +V T
t (4.81)

< HtH
0
t�1 > = < HT

t >< HT 0

t�1 > +V T
t;t�1 (4.82)

where V T
t;t�1 = V t

t J
0
t�1 + Jt(V T

t+1;t �AV
t
t )J

0
t�1.

4.7.6 Parameter Estimation in HMMs

The log likelihood in an HMM(1,1) is given by

log P (Ot; Ht) = log P (H1) +
TX
t=2

logP (HtjHt�1) +
TX
t=1

log P (OtjHt) (4:83)

The hidden state nodes are usually discrete K-valued variables. We can represent them

as K-dimensional unit column vectors, such that the state at time t taking on the value

030 is represented as Ht = [001 : : :0]0. Each of the terms in 4.83 can be decomposed into
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summations over H . The transition probability is P (HtjHt�1), given by

P (HtjHt�1) =
KY
i=1

KY
j=1

(Pij)
Ht;iHt�1;j (4:84)

where Pij is the hidden state transition probability, i.e. the probability of transitioning from

state j to state i, arranged in a K �K matrix P . Then the term logP (HtjHt�1) becomes:

logP (HtjHt�1) =
KY
i=1

KY
j=1

Ht;iHt�1;j logPij (4.85)

= H 0
t(logP )Ht�1 (4.86)

using matrix notation. The probability of the hidden states at time t = 1 is usually given

by a vector of initial {prior{ state probabilities �, such that

logP (H1) = H 0
1 log � (4:87)

Finally the P (OtjHt) or emission probabilities depend on the form of observation:

1. Discrete observations: If Ot is a discrete variable taking D values, we represent it

by D-dimensional unit vectors to obtain:

logP (OtjHt) = O0
t(logE)Ht (4:88)

where E is a D�K emission probability matrix: each column contains the probability

of each hidden state producing each of the possible discrete output values, i.e. eij =

P (ot = ijht = j), with 1 � i � D and 1 � j � K.

2. Gaussian observations: In this case Ot is a continuous variable drawn from a �nite

mixture of Gaussians:

P (OtjHt = j; �j ;�j) =
MX
m=1

cjmN (O; �jm;�jm) (4:89)

where 1 � j � K, N (O; �jm;�jm) is a Normal Gaussian distribution (or any other

log concave or elliptically symmetric density) with mean vector �jm and covariance

matrix �jm, and cjm is the mixture coe�cient or weight for hidden state j. The
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mixture coe�cients satisfy the stochastic constraint:

MX
m=1

cjm = 1 1 � j � K (4.90)

cjm � 0 1 � j � K; 1 � m �M (4.91)

In this case we have to estimate the mixture parameters, i.e. the mixing coe�cients,

the means and the covariance matrices.

Since the state variables are not observed we cannot compute 4.83 directly. We have

to "�ll-in" the incomplete data using the JLO algorithm {equivalent, as we have seen, to

Baum-Welch, Forward-Backward and E step in the EM algorithm{. It will compute the

expectation of 4.83 under the posterior distribution of the hidden state nodes given the

observations, i.e. P (HtjOt). This expectation can be expressed as a function of < Ht > and

< Ht; H
0
t+1 > (1 � t � T ). The �rst term < Ht > is a vector where each of its elements is

P (ht = jjO; �), i.e. the probability of being in state j at time t given the entire sequence

of observations O and the model parameters �. Traditionally this term corresponds to


t(j) in the HMM literature. The second term, < Ht; H
0
t+1 >, is a matrix of the joint

probability of successive states, i.e. P (Ht; Ht+1) given the observation sequence O and the

model parameters �. Each element of this matrix, thus, is �t(ij) = P (ht = i; ht+1 = jjO; �)

and the matrix is traditionally denoted by �t.

The JLO algorithm (Baum-Welch, Forward-Backward or E-step) yields �t(j) = f�j;�1;t

and �t(j) = ���t+1;T
(ht = sj). The previous expectations can be expressed in terms of �

and � as follows:

< Ht = j >=< Ht;j >= 
t(j) =
�t(j)�t(j)P
k �t(k)�t(k)

(4.92)

< Ht = i; H 0
t+1 = j >= �t(ij) =

�t(i)PijP (Ot+1jHt = i)�t+1(j)P
k;l �t(k)PklP (Ot+1jHt = l)�t+1(l)

(4.93)

Once the expectations are computed, the parameters are estimated by maximizing the

log likelihood 4.83 (M step): take the derivative of the log likelihood with respect to the

parameters �, set to zero, and solve subject to the sum-to-one constraints that ensure

stochastic transition, emission and initial state probability matrices.

Transition Probability Matrix: It is the expected number of transitions from state i
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to state j, divided by the total expected number of transitions from state i, i.e.

Pij =

PT�1
t=1 < Ht = i; H 0

t+1 = j >PT�1
t=1 < Ht+1 = j >

=

PT�1
t=1 �t(ij)PT�1
t=1 
t(j)

(4:94)

Emission Probability in Discrete Case: It is the expected number of times in state

j and observing output symbol k, divided by the total expected number of times in

state j:

P (Ot = kjHt = j) =

PT
t=1; s:t: Ot=k 
t(j)PT

t=1 
t(j)
(4:95)

Emission Probability in Continuous Case: Similarly, the mixture su�cient statistics

are given by:

< cjk > =

PT
t=1 
t(j; k)PT

t=1

PM
l=1 
t(j; l)

(4.96)

< �jk > =

PT
t=1 
t(j; k)OtPT
t=1 
t(j; k)

(4.97)

< �jk > =

PT
t=1 
t(j; k)(Ot� �jk)(Ot � �jk)

0PT
t=1 
t(j; k)

(4.98)

where 
t(j; k) is the probability of being in state j at time t with the kth mixture

component accounting for Ot, i.e.


t(j; k) =
�t(j)�t(j)PK
l=1 �t(l)�t(l)

cjkN (Ot; �jk�jk)PM
m=1 cjmN (Ot; �jm�jm)

(4:99)

The reestimation formula for cjk is the ratio between the expected number of times

the system is in state j using the kth mixture component and the expected number of

times the system is in state j. The mean vector �jk is the expected value of the portion

of the observation vector accounted for by the kth mixture component. Similarly the

covariance matrix �jk is the expected value of the portion of the covariance matrix

accounted for by the kth mixture component.

Finally, the MAP state identi�cation problem is the last problem that needs to be

addressed from the three basic problems that are commonly treated in statistical machine

learning. The next section describes an e�cient algorithm for MAP state assignment in

graphical models.
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4.8 MAP State Assignment via the Viterbi Algorithm or

Dawid's Propagation Algorithm

The MAP state identi�cation problem consists of the determination of the most likely state

of a set of unobserved variables, given observed variables and the probabilistic model. The

goal, thus, is to calculate f̂ (uh; e) = maxh1;:::;hN p(h1; : : : ; hN ; e), where one would like to

identify a set of values of the N hidden variables Hi which achieve this maximum. This

calculation can be achieved via a local propagation algorithm on the JT if one makes two

modi�cations to the standard JLO inference algorithm. This modi�ed version of the JLO

algorithm is due to Dawid [56] and it contains the well known Viterbi algorithm as a special

case. The modi�cations are:

1. First, during a message passing 
ow, the marginalization of the separator is replaced

by the maximum:

b̂S(hS) = max
CnS

aC(xC) (4:100)

where C is the originating clique of the 
ow and xC = xhC ; x
o
C are all the variables

(observed and hidden) in clique C. The de�nition of �S(hS) is similarly changed.

2. Second, marginalization within a clique is replaced by maximization:

f̂C = max
unxC

p(u) (4:101)

Given these two changes it can be shown that if the same evidence propagation operations

are carried out as described for the JLO algorithm, the resulting representation K̂f at

equilibrium is such that the potential function on each clique C is

f̂(xC) = max
uhnxC

p(xhC ; e; fu
hnxCg) (4:102)

where xhC corresponds to a value assignment of the hidden variables H in clique C. Once

the new representation is obtained one can locally identify the values Xh
C which maximize

the full joint probability as

x̂hC = argxh
C
f̂(xC) (4:103)
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This is known in the probabilistic expert systems literature as the "most probable explana-

tion" (MPE), given the observed evidence.

The HMM(1,1) MAP problem consists of inferring

max
h1;:::;hN

p(h1; : : : ; hN ; e) (4:104)

given a set of values for the observable variables, e = O1 = o1; O2 = o2; : : : ; Ok = oK ; or,

equivalently, inferring the set of arguments that achieve this maximum, i.e. the single best

state sequence (path) that maximizes the posterior probability of the hidden states given

the model and the evidence (or equivalently the joint probability). Dawid's algorithm can

be applied to any junction tree and therefore can be applied to the HMM(1,1) junction

tree. The Viterbi algorithm, based on dynamic programming methods, is the traditional

procedure for solving the MAP problem in HMM(1,1). It can be easily shown that Dawid's

algorithm is a generalization of the Viterbi algorithm (see �gure 4-13, (a)). In particular,

for an HMM(1,1), from a computational viewpoint, instead of searching through all NT

possible paths for an HMM(1,1) with N hidden states, the Viterbi algorithm provides a

recursive O(TN2) procedure: given the most likely incomplete path Hj;t�1jO leading up to

each state j at time t � 1, the most likely path leading to each state i at time t is

Ĥt = ijO = argmax p(OtjHt = i) � Pij � Ĥt�1 = jjO (4:105)

Therefore each state elects to continue one of the N best paths from the previous time slice.

The most likely full state sequence is then Ĥ jO = argmaxi(ĤT = ijO).

4.9 Discussion

So far I have shown the equivalence between the JLO algorithm and the Forward-Backward,

Baum-Welch or EM algorithms for doing inference in graphical models. I have also shown

the equivalence between Dawid's and the Viterbi algorithms. Both are direct applications

of dynamic programming to the MAP problem. The most important conclusion is that

graphical models are more general than the speci�c algorithms developed for HMM(1,1):

(1) while special extensions of the Baum-Welch and Viterbi algorithms can be de�ned with

no little e�ort, the JLO algorithm provides, by de�nition, a completely exact inference
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method for any PIN. (2) One can use the graphical model algorithms for any other in-

ference tasks beyond just calculating the likelihood or the evidence or the MAP solution.

Graphical models let us, in a quite simple way, deal with missing or probabilistic evidence,

simulating values from the model, or calculating partial solutions. The remaining of this

chapter describes extensions of the traditional HMM(1; 1). I will �rst motivate the need

for extensions of HMMs. Then I will present an overview of the most relevant extensions

to HMM(1; 1) that have been proposed in the literature. Finally I will describe in detail

the speci�c architecture used in this thesis: Coupled Hidden Markov Models (CHMMs) or

HMM(1; 2).

4.10 PINs for extensions of HMM(1,1)

Although HMM(1,1) have provided an extremely useful framework for modeling time series

(specially speech), it is also true that a single standard HMM(1,1) has strong limitations

as a model of some real complex phenomenon or behavior. Among the major limitations of

HMM(1,1) one �nds:

� Many real signals are generated by coupled physical processes that are not well mod-

eled by the unstructured state transition matrix of HMM(1,1).

� The �rst-order Markov properties of HMM(1,1) are not well suited to modeling many

long term dependencies that occur in real life, such as co-articulation e�ects in speech

that extend across several phonemes.

� The representation of context is limited to a single state variable. Therefore to ac-

commodate multiple channels of data, an HMM(1,1) would have to be formulated

with multivariate Normal distributions on the output variables. However, if there

are multiple processes generating those signals (channels), one must hope that these

processes evolve in a synchronized manner, since any variation between them would

be modeled as noise. If the processes interact and therefore such variation carries

information, HMM(1,1) might be an inappropriate graphical structure, because with

context limited to a single variable, a distinct state must be reserved for each possible

combination of signals on all the channels. It is easy to see that this Cartesian prod-

uct solution rapidly becomes intractable. Other extensions of the simple HMM(1,1)
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aimed at multiple channel modeling include using neural networks for outputs [15],

input-output models [21] and per-state mixture models. However all of them are based

on the traditional Markov formulation of single process dynamics.

Signals from systems with multiple processes are ubiquitous in the real world. Nearly

any signal produced by human behavior can be usefully and meaningfully decomposed into

a group of interacting processes. For such problems, it seems more appropriate to extend

the single process traditional HMM(1,1) structure to handle multiple state variables. The

naive solution, i.e. an HMM(1,1) with the Cartesian product of all possible process states

is rarely satisfactory: the computational cost is prohibitive, a surfeit of parameters leads

to over�tting, and there is often insu�cient data for a large number of states, leading to

undersampling and numerical errors. Reducing the state space ameliorates the problem

somewhat but introduces new problems of under�tting where states that should be distinct

are fused. In either case, the interactive processes are only implicitely represented in the

model in an obscure manner. In consequence, HMM(1,1), even with the correct number of

states and huge amounts of data, may train poorly because the data might be partitioned

among the states too early and usually incorrectly during training. Because of the Markov

independence assumption, the data is not shared among the states, thus reinforcing the

mistakes in the initial partitioning. Moreover systems with multiple generating processes

could produce "state perceptual aliasing": there might be states that share properties and

therefore emit similar signals generating ambiguity in the state identi�cation.

Models with compositional state representations would o�er conceptual advantages of

parsimony and clarity, with consequent computational bene�ts in e�ciency and accuracy.

Using graphical models one can construct various architectures for multi-HMM couplings

o�ering compositional state under various assumptions of independence. The role of graph-

ical modeling is key in at least two ways: (1) �rst, it provides a concise description of the

probabilistic independence assumed by a particular model, and (2) second, it provides a

general algorithm, the JLO algorithm, for doing inference and ML estimation.

4.10.1 Beyond Tractable Models

The rest of this chapter focusses on extensions of the traditional HMM(1,1) graph structure.

For notation purposes, I will denote in the following by St {instead of Ht { the hidden state

variable in the extended HMM structure and by Ot the observed variables.
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The traditional, single HMM(1,1) framework can be extended in di�erent ways. A basic

taxonomy classi�es the couplings depending on whether the outputs, the states or both are

coupled.

1. Coupling the outputs: The �rst option is to couple the outputs of several inde-

pendent hidden state Markov chains, i.e. the processes are nominally coupled at the

output, superimposing their outputs in a single signal (see �gure 4-15, (a)). These

models are called factorial hidden Markov models, FHMMs by Gharahmani and Jor-

dan ([82]). The hidden state, therefore, is factored into C distinct state variables

Ht = St = fS
(1)
t ; : : : ; S

(c)
t ; : : : ; S

(C)
t g, each of which can take on K(c) values. For sim-

plicity and without loss of generality I will assume that K(c) = K 1 � c � C, i.e. all

the Markov processes have the same number of states. The state space of this model

is represented in a distributed manner and consists of the cross product of these state

variables. FHMMs correspond to HMM(1,K) structure.

With a distributed state space, FHMMs allow the state space to be decomposed into

features that naturally decouple the dynamics of the process generating the time series.

Moreover distributed state representations simplify the task of modeling time series

generated by the interaction of multiple independent processes. For example, the

traditional source identi�cation problem, where signals with zero mutual information

are overlaid in a single channel, e.g. a speech signal generated by the superposition

of multiple simultaneous unrelated speakers.

FHMMs are closely related to the work in unsupervised learning directed to discover-

ing multiple independent causes or factors underlying the data [16], [93]. The motiva-

tion behind factorial learning algorithms is that many real world learning problems are

best characterized by an interaction of multiple independent causes or factors. The

goal of factorial learning is to invert the data generation process and discover a rep-

resentation that will both parsimoniously describe the data and re
ect its underlying

causes.

Given that the state space of FHMMs consists of all KC combinations of the S
(c)
t

variables, placing no constraints on the state transition structure would result in a

KC�KC transition matrix. Such an unconstrained system is uninteresting for several

reasons: (1) It is equivalent to the cross {cartesian{ product HMM with KC states;
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(2) it is unlikely to discover any interesting structure in the K state variables as

all variables are allowed to interact arbitrarily; (3) both time and space (sample)

complexity of the algorithm are exponential in K. FHMMs constrain the underlying

state transitions by assuming that each state variable transitions according to its own

dynamics, and is a priori uncoupled from the other state variables:

P (StjSt�1) =
CY
c=1

P (S
(c)
t jS

(c)
t�1) (4:106)

Let Ot be the observation vector of dimensionality D. The observation model in a

FHMM is given by

P (OtjSt) = jRj
�1=2(2�)�D=2 expf�1=2(Ot� �t)

0R�1(Ot � �t)g (4:107)

where

�t =
CX
c=1

W (c)S
(c)
t (4:108)

Each W (c) matrix is a D �K whose columns are the contributions to the means for

each of the settings of the hidden states in the (c)th HMM, S
(c)
t , and R is a D �D

covariance matrix.

The marginal distribution for Ot is obtained by summing over all possible states.

There are K settings for each of the C state variables. Thus there are KC possible

mean vectors obtained by forming sums of C columns where one column is chosen from

each of the W (c) matrices. The resulting marginal density of Ot is a Gaussian mixture

model, with KC Gaussian mixture components each having a constant covariance

matrix R. This static mixture model, just considering one time slice and ignoring the

Markov dynamics, is a factorial parameterization of the standard mixture of Gaussians

model [79].

The transition structure for the FHMM model can be parametrized using C distinct

K � K matrices. FHMM are tractable in space, taking KC states as opposed to

KC . However they present an inference problem equivalent to that of a combina-

toric HMM. The naive exact algorithm, consisting of translating the FHMM into an

equivalent HMM with KM states and using the Baum-Welch algorithm, has time
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complexity of O(TK2C). Like in other models with multiple densely-connected hid-

den variables, this exponential time complexity makes exact learning and inference

intractable. Thus, although the Markov property can be used to obtain Forward-

Backward-like factorizations of the necessary expectations across time steps, the sum

over all possible con�gurations of the other hidden state variables within each time

step is unavoidable. This intractability is due to the mixture nature of the observa-

tions: the setting of one state variable only determines the mean of the observation if

all other state variables are �xed.

Rather than computing the exact posterior probabilities, one can approximate them

using a Markov Chain Monte Carlo sampling scheme, and therefore avoid the sum over

exponentially many state patterns at some cost in accuracy. In [82] Ghahramani and

Jordan introduce several approximations to the inference problem in FHMMs: Gibbs

sampling and mean �eld theory from statistical physics [268], [177]. They also propose

a "structured mean �eld" solution in which the mean �eld graph is partitioned into

subgraphs that can be tractably estimated via exact methods (i.e. Forward-Backward

analysis of the independent, decoupled HMMs). A free energy function is de�ned

over the entire graph. To prevent exponential growth in the number of parameters,

rather than specifying higher-order couplings through probability transition matrices,

they introduce second-order interaction terms in the energy (log probability) function.

Such terms e�ectively couple the chains in a more e�cient way, with much fewer

parameters than a full probability transition matrix would require. In the graphical

model formalism these correspond to symmetric undirected links, making the model

like a chain graph. The JLO algorithm can still be used to propagate evidence exactly

in chain graphs. However such undirected links cause the normalization constant

of the probability distribution {the partition function{ to depend on the coupling

parameters. Therefore, like in Boltzmann machines [3], both clamped and unclamped

phase are required for learning, where the goal of the unclamped phase is to compute

the derivative of the partition function with respect to the parameters [161]. The mean

�eld approximation can be used to train virtually any elaboration on HMM structure

in O(TCK2) time. However, if there are strong and varied interactions across the

links that have been removed, the approximation will be quite poor.

135



2. Coupling the states: Conventional HMMs excel for processes that evolve in lock-

step; FHMMs are meant for processes that evolve independently. However, many

problems tend to lie between the two extremes. Two generating processes might

interact without wholly determining each other. Each process has its own internal

dynamic and its a�ected by what the other processes do, possibly in a casual manner.

Moreover, the inter-process coupling might be stronger or weaker depending on each

state. A variety of inference graph structures have been proposed to model these

phenomena (see �gure 4-15).

Tree structured HMMs: MHDT An interesting generalization of FHMMs results

if one conditions on an input Ot and orders the C state variables such that S
(c)
t

depends on S
(l)
t , for 1 � l � c (�gure 4-15 (b)). The resulting architecture is

known as hidden Markov decision tree (HMDT) [83]. This architecture can be

interpreted as a probabilistic decision tree with Markovian dynamics linking the

decision variables. HMDTs provide a useful starting point for modeling time

series with both temporal and spatial structure at multiple resolutions [115].

Linked HMMs: LHMMs In [216] two parallel Boltzmann chains are coupled by

weights that connect their hidden state nodes. Saul and Jordan propose couplings

between synchronous states for chains that evolve in lockstep at the same rate

or with disparate time scales. We may call such inference graph Linked HMMs

(LHMMs), depicted in �gure 4-15 (c). The resulting network for 2 coupled chains

is tractable. They present an O(TK3) exact algorithm for training an equivalent

two-chain Boltzmann machine based on decimation, a method from statistical

mechanics in which the marginal distributions of singly or doubly connected

nodes are integrated out. A limited class of graph structures can be recursively

decimated, obtaining correlations for any connected pair of nodes.

Coupled HMMs: CHMMs Finally, the graphical model structure used in this

thesis captures causal {temporal{ in
uences of one chain on the other. To cap-

ture interprocess in
uences across time, the coupling must bridge time slices, as

depicted in �gure 4-15 (d). Intuitively and empirically (as the results of this the-

sis show), it is appropriate for processes that in
uence each other symmetrically

and possibly causally. This architecture is known as Coupled HMMs, CHMMs.
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The graphical structure of a C processes CHMM corresponds to a HMM(1,C).

Inference in CHMMs has the same time complexity as the Cartesian product

HMM. Therefore exact algorithms are not attractive. Given a HMM(1,2), i.e. a

2-chain CHMM, exact MAP inference is O(TK4) [108]. Figure 4-16 depicts the

junction tree for a 2-chain CHMM. Note that the hidden state cliques are of size

4. Sampling methods improve over random sampling by discarding, weighting

and/or varying sample state sequences according to their posteriors [92, 72, 119].

These algorithms are consistent, i.e. they converge asymptotically to the true

distribution. However it is not known whether they are e�cient, i.e. they produce

the best estimates given the order of computation.
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Figure 4-15: Variety of couplings for dependent processes: (a) FHMM, (b) HMDT,
(c) LHMM and (d) CHMM

All these examples suggest that the graphical modeling framework provides a useful
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Figure 4-16: (a)Triangulated graph for a 2-chain CHMM with the cliques.
(b)Junction Tree for a 2-chain CHMM. Note that the clique size for the hidden
state variables is 4. Exact MAP inference in such junction tree is O(TK4)

framework for exploring extensions of HMMs. The examples also make clear, however, that

for many interesting graphical structures, the exact solution is computationally intractable.

The KC complexity of HMM(1,C) is prohibite for large C. In the next section I will develop

the theory behind the new extension of HMM(1,1) used in thie thesis work, namely Coupled

Hidden Markov Models, CHMMs or HMM(1,C).

4.11 Coupled HiddenMarkov Model: CHMMs or HMM(1,C)

As it has been presented in the previous section, there are some major limitations in the

standard single process HMM, HMM(1,1), when dealing with real signals: (1) the unstruc-

tured state transition matrix of HMM(1,1) does not seem to be appropriate for modeling

signals generated by coupled physical processes; and (2) the representation of context is

limited to a single state variable. Various extensions of the simple HMM(1,1) have been

proposed in the literature. In this thesis, I use and experimentally validate a new structure,

namely Coupled Hidden Markov Models, HMM(1,C) or CHMMs, for causally coupling two

or more HMMs.

In this section I describe a deterministic O(TK2) algorithm for maximum entropy ap-

proximations to state and parameter values in CHMMs. Part of the material presented here

can be found in [28].

The algorithm is not limited to 2-chain CHMMs (HMM(1,2)) but arbitrary C-chain
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CHMMs (HMM(1,C)). However, I will describe in detail the algorithm for 2-chain CHMMs,

being this the structure employed in the validation experiments described in chapter 5.

Observing the graph structure depicted in �gure 4-15 (c), the posterior hidden state

probability for a 2-chain CHMM is given by:

P (SjO)=
Ps1p(o1js1)Ps01p(o

0
1js

0
1)

P (O)

TY
t=2

Pstjst�1
Ps0tjs0t�1

Ps0tjst�1
Pstjs0t�1

p(otjst)p(o
0
tjs

0
t)

where Pstjst�1
; Ps0t js0t�1

are the \intra-state" transition probability matrices, Pst js0t�1
; Ps0tjst�1

are the \inter-state" or coupling transition probability matrices and p(otjst); p(o01js
0
1) are

the observation probabilities.

4.11.1 N-heads dynamic programming

As we have seen in section 4.6 the Forward step in the Forward-Backward algorithm of tra-

ditional HMMs (or the collect step of the JLO algorithm) exploits dynamic programming to

e�ciently do inference (model likelihood) and estimate the most likely hidden state sequence

(Viterbi analysis). Dynamic programming provides a method for collecting statistics on an

exponential number of possible paths through an HMM state trellis in polynomial time,

because evidence from all paths that share a state at time t may be combined without loss

of information. Therefore, instead of having to track KT paths in an HMM with K hidden

states and T time steps, only K path "heads" are tracked. Every state and every transition

at every time slice needs to be visited to collect statistics for estimation. Therefore dynamic

programming in a state trellis of length T and K states requires O(TK2) time.

In the case of a CHMM with C chains, the joint state trellis has KC states. The

associated dynamic programming problem is O(TK2C). In this section an algorithm is pre-

sented that relaxes the assumption that every transition needs to be visited. The resulting

algorithm is O(T (CK)2) while closely approximating the full combinatoric result.

The goal is to formulate a policy for sampling a small and representative subset of

the KCT state sequences while obtaining as much information as possible. The posterior

probability mass of an HMM is not evenly distributed among all possible state sequences.

It is, by de�nition, concentrated in state sequences that are close to the "true" or MAP

state sequence. Low-probability sequences carry relatively little information for estimation
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problems.

Let O be a sequence of observed variables. The posterior of a model M , P (M jO) is the

sum of the posteriors of all possible state paths Sfg through the model. Let < P (M jO) >Sfg

be the expectation the posterior in each time slice with respect to all possible state sequence

paths. If only a subset, SfQg, of all possible paths is explored, the question is to �nd the

optimal path selection policy such that the least information is lost. This problem can be

cast as a minimization of the cross entropy between the true posterior and the simpli�ed

posterior:

D(SfgkSfQg) =
X
O

hP (M jO)iSfg log
hP (M jO)iSfg

hP (M jO)iSfQg
(4.109)

=
X
O

hP (M jO)iSfg log hP (M jO)iSfg (4.110)

�
X
O

hP (M jO)iSfg log hP (M jO)iSfQg (4.111)

= f(H(O))�
X
O

hP (M jO)iSfg log hP (M jO)iSfQg (4.112)

The �rst term is a monotonic function of the full posterior entropy and thus constant

with respect to the "reduced" posterior, hP (M jO)iSfQg . Assuming that all observed se-

quences O are equally probable, the �rst expectation in equation 4.112 can be also treated

as a constant and be pulled out of the sum:

D(SfgjjSfQg) = f(H(O))� c
X
O

log hP (M jO)iSfQg (4.113)

Therefore, minimizing the cross entropy 4.113 is equivalent to maximizing the expec-

tation, log hP (M jO)iSfQg � hlogP (M jO)iSfQg , by virtue of Jensen's inequality. This ex-

pectation will be maximum when SfQg is the set of paths with the greatest probabil-

ity mass. Instead of directly maximizing log hP (M jO)iSfQg , I will use the upper bound

hlogP (M jO)iSfQg . In particular, for a 2-chain CHMM, equation 4.113 yields:

Q=
N

argmax
s2Sfg

X
O

hlogP (M jO)is (4.114)

=
N

argmax
s2Sfg

X
O

*
log Ps1Ps01p(o1js1)p(o

0
1js

0
1)

TY
t=2

Pstjst�1
Ps0tjs0t�1

Pst js0t�1
Ps0tjst�1

p(otjst)p(o
0
tjs

0
t)

+
s
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=
N

argmax
s2Sfg

X
O

*0B@ logPs1+ log Ps01+

log p(o1js1)+ log p(o01js
0
1)

1
CA +

TX
t=2

0
BBBB@
log Pstjst�1

+ logPs0tjs0t�1
+

log Pstjs0t�1
+ logPs0tjst�1

+

log p(otjst)+ log p(o0tjs
0
t)

1
CCCCA
+

s

(4.115)

Some desired properties of the procedure for �nding these SfQg paths in O(TK2C) time

are: (1) No more than O(K � C) path heads should be tracked, i.e. as many heads as

the total number of states there are in all the Markov chains; (2) every component state

should be visited so that statistics may be collected by re-estimating transition and output

probabilities.

The policy can be visualized on the state trellises for the component HMMs in a 2-chain

CHMM. Each state sequence i through the trellis is double tracked, having a head in one

HMM ht(i) and an associated "sidekick" k0t(j) in the opposite HMM (see �gure 4-17). In

this case, a path is de�ned by the pair fht(i); k
0
t(j)g. The antecedent path is the subsequence

leading to a particular path at time t.

Figure 4-17: State trellises for a 2-chain 4-state CHMM

Every state i of each component chain c needs to be the head of some path to guarantee

the visiting criterion, i.e. hct(i), 1 � i � Kc, 1 � t � T and 1 � c � C, in a C-chain CHMM

of time length T and Kc states. Therefore coupling 2 HMMs with K and K0 states takes

K + K0 heads, each one with its own sidekick, k0t(j). The question is how to choose the

sidekick for each head. Note that, for each component chain c, the left-hand column of each

parenthesized expression in equation 4.115 is constant, because every state i in the chain

has to be a head for some path. For example, for the �rst chain:

141



constant=
N

argmax
s2Sfg

X
O

*0B@ logPs1+
log p(o1js1)

1
CA +

TX
t=2

0
BBBB@
logPstjst�1

+

logPstjs0t�1
+

log p(otjst)

1
CCCCA
+

s

(4.116)

Consequently we only need to maximize the right-hand columns, which amounts to

choosing the MAP sidekicks:

Q1=
N

argmax
s2S0fg

X
O

*0B@ logPs01+

log p(o01js
0
1)

1
CA+

TX
t=2

0
BBBB@
logPs0tjs0t�1

+

logPs0tjst�1
+

log p(o0tjs
0
t)

1
CCCCA
+

s

(4.117)

By symmetry, the converse applies for the heads in the opposite chain. This policy

de�nes a O(K) algorithm for �nding the MAP tuples in a 2-chain CHMM in O(K2) time

by �rst associating MAP sidekicks to each antecedent path and then associating antecedent

paths to each new head. This leads to approximate Forward-Backward and Viterbi algo-

rithms described in the following sections.

4.11.2 Forward-Backward Algorithm for CHMMs

In each step of the forward analysis the MAP mass fht(i); k
0
t(i)g pair is needed given all

antecedent paths. Every head ht(i), 1 � i � K sums over the same set of antecedent

paths and therefore shares the same sidekick k0t(i) = k0t, 1 � i � K0. As we have seen in

section 4.11.1 the sidekick is chosen to maximize the marginal posterior given all antecedent

paths. A two-step procedure for doing so without marginalizing is as follows: (1) Sidekick

selection: in each chain, choose the MAP state given all antecedent paths. (2) Compute

path posterior: for each head, ht(i), calculate the new path posterior given all antecedent

paths and the previously chosen sidekick.

The approximate Forward-Backward algorithm for a 2-chain CHMM is described in the

following. I denote heads and sidekick indices in each time slice t by ht(i); k
0
t(j); �

�
t (i) is the

probability mass associated with each head, ht(i); qt(i) is the partial posterior probability
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(in the absence of sidekicks) of a state i given all ��t�1(j), 1 � j � K and the output at t.

The maximizing policy selects the sidekick that maximizes


qt(k0t(i))j�

�
t�1(j)

�
i
.

1. Calculate all partial posteriors:

qt(i) = p(otji)
X
j

Pijht�1(j)Pijk0t�1(j)
��t�1(j) (4:118)

2. Choose the sidekick from each chain:

kt(i) = argmax
i0

qt(i
0) (4:119)

3. Each state is its own head: ht(i) = i.

4. Calculate full posteriors for each path:

��t (i) = p(otji)p(otjk
0
t(i))

X
j

Pijht�1(j)Pijk0t�1(j)
Pk0t(i)jht�1(j)Pk0t(i)jk0t�1(j)

��t�1(j) (4:120)

5. The forward variables in each chain are obtained by maginalizing out each head (over

all possible sidekicks)

�t(i) = p(otji)
X
j

Pijht�1(j)Pijk0t�1(j)

X
g

p(otjk
0
t(g))Pk0t(g)jht�1(j)Pk0t(g)jk0t�1(j)

��t�1(j)

= p(otji)
X
j

Pijht�1(j)Pijk0t�1(j)

X
g

qt(k
0
t(g)) (4.121)

Therefore and in contrast to the conventional Forward-Backward procedure described

in section 4.6, we have two di�erent kinds of forward variables: �� variables for propagating

probabilities, and marginalized � variables for re-estimating parameters. Similarly, the

backward variables

��t (i) =
X
j

Pht+1(j)jiPk0t+1(j)jiPht+1(j)jk0t(i)Pkt+1(j)jk0t(i)p(ot+1ji)p(ot+1jk
0
t+1(i))�

�
t+1(j)

(4:122)

are computed using the sidekicks found in the forward analysis, and similarly marginalized

to obtain the �t(i) variables.
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Without increasing complexity, we can improve slightly over this greedy cross-entropy

approximation by conditioning the choice of sidekicks in t on ��t�1 and on sidekicks chosen

in t + 1, k0t+1(j). In practice, this causes the forward calculation to occasionally backtrack

one time slice. Similarly, one may recalculate sidekicks in all t given ��t�1 and ��t+1, then

recalculate forward and backward variables. Although both schemes obtain slightly higher

posteriors by expanding the temporal scale of the greedy method, neither has substantial

impact on parameter estimation. Therefore, I used the basic algorithm in all the experiments

carried out in this thesis.

4.11.3 Scaling

To prevent numerical over
ow a scaling procedure is necessary, because the joint probabil-

ities quickly become vanishingly small. Typically, a scaling variable ct =
P

i �
�
t (i) is used

to normalize the forward variables (��t (i)  ��t (i)=ct) on each iteration. The backward

variables are rescaled using the same values (��t (i)  ��t (i)ct). Scaling must preserve the

stochastic nature of the posterior probabilites of all states, i.e. the posterior probabilities of

all the states in a chain must sum to one in each time slice (
P

i 
t(i) =
P

i �t(i)�t(i) = 1).

In a conventional HMM, the Forward-Backward algorithm {via dynamic programming{

exhaustively samples all possible state sequences. In consequence this invariant is automat-

ically obtained. In the N-heads dynamic programming version only a small fraction of state

sequences are sampled, so that
P

i 
t(i) < 1. Noting that �t(i) = p(otji)
P

j �t�1(j)Pijj, we

obtain a simple procedure for rescaling the backward variables that implicitly restores the

invariant:


t(i)  
�t(i)�t(i)P
i �t(i)�t(i)

(4.123)

�t(i)  

t(i)

�t(i)
=


t(i)

p(otji)
P

j �t�1(j)Pijj
(4.124)

4.11.4 MAP Estimation of the State Sequence: Viterbi

In each step of the Viterbi algorithm we seek the MAP density fht(i); k0t(i)g pairs given

all antecedent paths. In conventional HMMs, for each head {state{ i at time t, ht(i),

the Viterbi algorithm selects the most likely antecent path in t � 1. In N-heads Viterbi,
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a sidekick at time t, k0t(i) needs to be chosen too. However, note that, in contrast to the

Forward-Backward analysis, each head might have a di�erent sidekick. These choices can be

made in a two-step procedure: (1) for each antecedent path in t�1, fht�1(i); k
0
t�1(i)g select

MAP sidekicks in t, k0t(j); (2) for each head in t, ht(i), select the antecedent path in t � 1,

fht�1(i); k0t�1(i)g and associated sidekick k0t(i) that maximizes the new head's posterior.

Algorithmically, this N-heads Viterbi algorithm is obtained by taking the maximum rather

than the sum in steps 1{4 (equations 4.118 to 4.121).

4.12 Synthetic Data as Priors

Bayesian inference is an approach to statistics in which all forms of uncertainty are expressed

in terms of probability.

A Bayesian approach to a problem starts with the formulation of a model that we hope

is adequate to describe the situation of interest. We then formulate a prior distribution

over the unknown parameters of the model, which is meant to capture our beliefs about

the situation before seeing the data. After observing some data, we apply Bayes' Rule

to obtain a posterior distribution for these unknowns, which incorporates both the prior

and the data. From this posterior distribution we can compute predictive distributions for

future observations.

This theoretically simple process can be justi�ed as the proper approach to uncertain

inference by various arguments involving consistency with clear principles of rationality.

Despite this, since Bayes (1763) and more importantly since Fisher (1922) the scope and

merit of Bayesian inference have been debated. Critics have been claiming that the choice

of the priors is too arbitrary and subjective to be acceptable. It is indeed subjective, but

for this very reason it is not arbitrary. There is (in theory) just one correct prior, the

one that captures your (subjective) prior beliefs. In contrast, other statistical methods are

truly arbitrary, in that there are usually many methods that are equally good according to

non-Bayesian criteria of goodness, with no principled way of choosing between them.

On the other hand, proponents are attracted to the logical consistency, simplicity and


exibility of the Bayesian approach such that they tend to view the selection of a prior as

an important but manageable technical detail. There have been serious e�orts on �nding

structural rules that determine priors, specially during the 1960s and 1970s and again in
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the past several years.

The fundamental ideas originate with Je�reys, who believed in the existence of an \initial

state of knowledge", and thought that it was important to be able to make inferences based

on data collected at this stage. In the case of a particular hypothesis being considered,

he described this stage as one at which an investigator has \no opinion" about whether

the hypothesis is true or not [107]. This has lead to what are called \non-informative" or

\reference" priors. Many methods have been proposed for constructing reference priors.

Among them, Laplace and the principle of insu�cient reason, invariance, data-translated

likelihoods, maximum entropy, minimum entropy, the Berger-Bernardo method, geometry-

based methods, coverage matching methods, Zellner's method, decision-theoretic methods,

and Rissanen's method. I direct the interested reader to [121] for a good survey of the

proposed methods.

Two interpretations have been given to reference priors. The �rst interpretation asserts

that they are formal representations of ignorance. Ignorance is desirable because the statis-

tical analysis is often required to appear objective and \neutral". Noninformative priors are

intended not to bias the posterior towards any direction. The second asserts that there is

no objective, unique prior that represents ignorance; instead reference priors are chosen by

public agreement, because of their convenience. Historically, the �rst interpretation was at

one time the dominant interpretation and much e�ort was spent trying to justify one prior

or another as being noninformative. In the last years, the trend has been to shift to the

second interpretation. There are many situations where reference priors lead to posteriors

with very undesirable properties. These include incoherence, inadmissibility of Bayes esti-

mators, marginalization paradoxes, sample space dependence, improperty, and unsuspected

marginal e�ects in high-dimensional problems.

Kass and Wasserman [121] highlight some open questions about prior selection, such as

the computation of Je�rey's prior and the veri�cation that it leads to a proper posterior in

nonnormal hierarchical problems. In particular, the authors emphasize the importance of

the priors of small sample problems. In many real situations {as it is the case of this thesis{

there is a very limited amount of data. In these occasions, the prior can overwhelm the

data. In Kass and Wasserman's words 'when sample sizes are small (relative to the number

of parameters being estimated), it is dangerous to put any faith in any \default" solution'

[121].
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I propose in this thesis a novel method for prior speci�cation by means of models gen-

erated from synthetic data. For example, in the visual surveillance task I have developed

a framework for building and training models of the behaviors of interest using synthetic

agents [174, 208]. Simulation with the agents yields synthetic data that is used to train prior

models. These prior models are then used recursively in a Bayesian framework to �t real

behavioral data. This approach provides a rather straightforward and 
exible technique to

the design of priors, one that does not require strong analytical assumptions to be made

about the form of the priors3. Moreover, because the prior models are generated using

synthetic data that mimics real human behaviors, I would claim that they capture quite

well our subjective prior beliefs about the problem. And this is the de�nition of a Bayesian

prios.

Experimental data (see section 5.4) of human-to-human interactions have shown that

by combining such synthetic priors with limited real data one can easily achieve very high

accuracies of recognition of di�erent interactions. Thus, the system is robust to cases in

which there are only a few examples of a certain behavior (such as in interaction type 2

described in section 5.4.3) or even no examples except synthetically-generated ones. Figure

4-18 illustrates the two-step training procedure when using this synthetic priors.

This is a powerful yet simple new approach for the selection and design of priors in

Bayesian approaches to inference.

4.13 Hierarchical PINs

Having already presented the theory behind the dynamic graphical models (DynPINs), at

this point I would like to brie
y remind the reader that I have used a two-layer hierarchy

of DynPINs for modeling and recognizing human behaviors. The structure of the proposed

computational model of human behavior depicted in �gure 1-3 can be seen as a two-layer

hierarchical dynamic graphical model.

The proposed hierarchy consists of two levels, depicted in �gure 4-19: (1) small-scale,

short-term structure of human behavior, described by linear dynamic models (Kalman Fil-

ters), thus incorporating constraints such smoothness and continuity; (2) long-term, large-

3Note that in most of the cases the priors could have the same form as the posteriors, namely they are
graphical models.
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Figure 4-18: Training procedure when using synthetically generated priors

scale behaviors, modeled by HMM(1,1) and CHMM (HMM(1,2)). A similar framework was

proposed by Pentland and Liu ([182], [184]) in the domain of driving, and it is related to

research in robot control [150] and computer vision [31], in which elements from dynamic

modeling or control theory are combined with stochastic transitions. These related e�orts

have been successful in tracking human motion and recognizing atomic actions such as

running. My approach, similarly as in [182], goes beyond simple actions, to describe and

classify more extended and elaborate behaviors, such as following a person or passing a ve-

hicle while driving. These behaviors consist of several atomic actions chained together in a

particular sequence via a HMM or CHMM. Therefore, in this thesis work, the observations

that feed the DynPINs are not raw observations, but the state variables of a Kalman Filter.

Once the basic theoretical framework has been formulated, I will proceed to describe

the experimental testbeds that I have developed in this thesis to validate the just-described

theory. They are aimed to recognize and predict increasingly more complex individual and

interactive behaviors in real situations.
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Figure 4-19: Hierarchical DynPIN used in this thesis
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Chapter 5

Experiments and Applications

In this chaper I describe the experiments that test the computational model of human

behavior proposed in this thesis. The theoretical background has already been presented

in chapters 3 and 4. The proposed model consists of two layers: (1) at the bottom, the

perceptual system {see chapter 3{ senses the world (user's face, body, hands, car's internal

signals, and surrounding tra�c) and models its short-term dynamics using Kalman �lters;

(2) at the top, the behavior models (HMMs and CHMMs) {see chapter 4{ recognize and

predict the human behaviors of interest (facial expressions, two-hand gestures, pedestrian

interactions and driver maneuvers).

I have developed four major testbeds for recognizing and predicting human behavior in

real situations. These systems are evaluated by their recognition accuracy on testing data.

In the case of interacting behaviors, the performance of the CHMMs {see section 4.11{ will

be compared to that of HMMs, a state-of-the-art competitive learning architecture. Some

applications of the systems are also presented.

The four systems are: (1) LAFTER, a real-time face detection and tracking system

with facial expression recognition; (2) two-hand gesture recognition in TaiChi; (3) a visual

surveillance system for automatic detection and recognition of pedestrian interactions; and

(4) a SmartCar for acquisition and automatic recognition of driver behavior.

The perceptual input (described in chapter 3) in these systems ranges from computer

vision for face and mouth tracking in LAFTER {described in section 3.2{, 3-D hands

and body tracking in the TaiChi gesture recognition system, and body tracking in the

pedestrian surveillance system {described in section 3.2{ to a sophisticated, multimodal
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data acquisition system in the SmartCar, with four video signals and �ve car internal

signals (brake, acceleration throttle, gear, steering wheel angle and speed) {described in

section 3.3.

The behavior models in all four systems are dynamic graphical models or DynPINs

(HMMs and CHMMs). As we have seen in chapter 4, PINs present several important

advantages that are relevant to the problem of modeling human individual and interactive

behaviors: they can handle incomplete data as well as uncertainty; they are trainable and

easy to avoid over�tting; they encode causality in a natural way; there are algorithms for

both doing prediction and probabilistic inference; they o�er a framework for combining prior

knowledge and data; and �nally they are modular and parallelizable. From a psychological

viewpoint, there is interesting connections between DynPINs and some of the models of

human behavior that have been proposed in Psychology and Philosophy (see chapter 2).

As it has already been stated in section 4.12, I pursue in this thesis a Bayesian approach

to modeling that includes both prior knowledge and evidence from data. One of the hy-

pothesis of this thesis work is that the Bayesian approach provides the best framework for

coping with small data sets and eventually novel behaviors. Dynamical graphical models or

DynPINs (see chapter 4) [37], Hidden Markov Models (HMMs) [196] and Coupled Hidden

Markov Models (CHMMs) [30, 28, 172], seem most appropriate for modeling and classify-

ing human behaviors because they o�er dynamic time warping, a well-understood training

algorithm, and a clear Bayesian semantics for both individual (HMMs) and interacting or

coupled (CHMMs) generative processes. These models address some of the major problems

that psychologists and philosophers have traditionally been facing. Most of the psycholog-

ical and philosophical models are manually built, relatively ad-hoc, not learnt from human

behaviors in real situations and not predictive. Finally there is a lack of rigorous mecha-

nisms for evaluating the performance of the models. As a consequence, there are very few

systems able to perceive and understand aspects of human behavior. The human behavior

modeling framework proposed in this thesis solves most of these problems: the model pa-

rameters are automatically learnt from real data, collected in real situations. The models

are generative, predictive, and are evaluated according to their recognition accuracy on test

data.

From a practical point of view, a major problem with a data-driven statistical approach,

specially when modeling rare or anomalous behaviors, is the limited number of examples
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of those behaviors for training the models. This is another important contribution of this

thesis. I therefore, emphasize e�cient Bayesian integration of both prior knowledge (by the

use of prior models learned from synthetic data) with evidence from real data (by situation-

speci�c parameter tuning). In this sense the goal is to be able to successfully apply the

system to normal real-life situations without additional training.

To specify the priors in the learning framework developed in the thesis, I propose to

use models generated from synthetic data. For example, in the visual surveillance task I

have developed a framework for building and training models of the behaviors of interest

using synthetic agents [174, 208]. Simulation with the agents yields synthetic data that

is used to train prior models. These prior models are then used recursively in a Bayesian

framework to �t real behavioral data. This approach provides a rather straightforward

and 
exible technique to the design of priors, one that does not require strong analytical

assumptions to be made about the form of the priors1. Experimental data (see section

5.4) of human-to-human interactions have shown that by combining such synthetic priors

with limited real data one can easily achieve very high accuracies of recognition of di�erent

interactions. Thus, the system is robust to cases in which there are only a few examples

of a certain behavior (such as in interaction type 2 described in section 5.4.3) or even no

examples except synthetically-generated ones.

5.1 Isolated Single User Behaviors in LAFTER: Continuous

Real-time HMMs for Facial Expression Recognition

The �rst and simplest system that I have developed for modeling human behavior is

LAFTER. As it has been described in chapter 3, LAFTER extends previous e�orts to

real-time analysis of the human face using our blob tracking methodology. The main key

elements of LAFTER are mixture-of-Gaussians blob model as a representation for com-

puter vision applications, batch and on-line Expectation-Maximization for blob parameter

estimation, real-time active camera tracking by means of a PD controller, and continuous,

real-time HMM classi�cation method for mouth shape recognition. I will describe in this

section the mouth shape recognition experiments and results obtained with LAFTER. In

1Note that in most of the cases the priors could have the same form as the posteriors, namely they are
graphical models.
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LAFTER the temporal interpretation of facial expressions is performed by use of Hidden

Markov Models (HMMs) [197] to recognize di�erent patterns of mouth shape. HMMs are

one of the basic probabilistic tools used for time series modeling and one of the simplest dy-

namic graphical models or DynPINs (see section 4.4.2 in chapter 4). A HMM is essentially

a mixture model where all the information about the past of the time series is summarized

in a single discrete variable, the hidden state. This hidden state is assumed to satisfy a �rst

order Markov condition: any information about the history of the process needed for future

inferences must be re
ected in the current state.

Before proceeding with a detailed description of LAFTER, I will review the most relevant

previous work in facial expression recognition using computer vision.

5.1.1 Previous Work in Facial Expression Recognition

In recent years, much research has been done on machine recognition of human facial ex-

pressions. Feature points [12], physical skin and muscle activation models [145, 258, 212],

optical 
ow models [64], feature based models using manually selected features [186], local

parametrized optical 
ow [22], deformable contours [143, 157], combined with optical 
ow

[274] as well as deformable templates [120, 278, 91, 32] among several other techniques have

been used for facial feature analysis.

Even though there are numerous face detection, tracking and facial features analysis

systems, there are relatively few facial expression recognition systems. Among them and to

the best of my knowledge, none of them performs robustly in real-time. I will overview in the

following the recognition performance of some of them. The approach proposed by Matsuno

et al [145] performs extremely well on training data (98:4% accuracy) but more poorly on

testing data, with 80% accuracy. They build models of facial expressions from deformation

patterns on a potential net computed on training images and subsequent projection in the so

called Emotion Space. Expressions of new subjects are recognized by projecting the image

net onto the Emotion Space. Black et al [22] report an overall average recognition of 92%

for 6 di�erent facial expressions (happiness, surprise, anger, disgust, fear and sadness) in

40 di�erent subjects. Their system combines deformation and motion parameters to derive

mid- and high-level descriptions of facial actions. The descriptions depend on a number

of thresholds and a set of rules that need to be tuned for each expression and/or subject.

The system described in [135] has a recognition rate of about 74% when using 118 testing

153



images of the seven psychologically recognized categories across several subjects. They use


exible models for representing appearance variations of faces. Essa et al [65] report 98%

accuracy in recognizing 5 di�erent facial expressions using both peak-muscle activations and

spatio-temporal motion energy templates from a database of 52 sequences. An accuracy of

98:7% is reported by Yael Moses et al [157] on real-time facial expression recognition. Their

system detects and tracks the user's mouth, by representing it by a valley contour based

between the lips. A simple classi�cation algorithm is then used to discriminate between 5

di�erent mouth shapes. They consider only confusions but not false negatives (confusions of

any expression to neutral) on two independent samples of about 1000 frames each and of a

predetermined sequence of 5 di�erent expressions plus the neutral face. Padgett et al [176]

report 86% accuracy on emotion recognition on novel individuals using neural networks

for classi�cation. The recognized emotions are happy, sad, fear, anger, surprise, disgust or

neutral across 12 individuals. Finally the method adopted by Lien et al [141] is the most

similar to LAFTER in the sense of the recognition approach, because they also use HMMs.

The expression information is extracted by use of facial feature point tracking (for the lower

face {mouth{) or by pixel-wise 
ow tracking (for the upper face {forehead and eyebrows{)

followed by PCA to compress the data. Their system has an average recognition rate for

the lower face of 93% and for the upper face of 91% using FACS.

LAFTER extends these previous e�orts to real-time analysis of the human face using

our blob tracking methodology. This extension required development of a new mixture-of-

Gaussians blob model, an incremental Expectation Maximization method, an active camera

control by means of a PD controller, and a continuous, real-time HMM classi�cation method

suitable for classi�cation of shape data.

As it has been described in chapter 4, HMMs are a particular case of DynPINs, dy-

namic probabilistic inference networks or graphical models. HMMs o�er dynamic time

warping, an e�cient learning algorithm and clear Bayesian semantics. From a practical

viewpoint, HMMs have been prominently and successfully used in speech recognition and,

more recently, in handwriting recognition. However, their application to visual recognition

purposes is more recent [276], [269], [270], [233].

As we have seen in chapter 3 (equation 4.15), the posterior state sequence probability
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in a HMM is given by

P (SjO) = Ps1ps1(o1)
TY
t=2

pst(ot)Pstjst�1
(5:1)

where S = fa1; : : : ; aNg is the set of discrete states, st 2 S corresponds to the state at time

t. Pijj
:
= Pst=aijst�1=aj is the state-to-state transition probability (i.e. probability of being

in state ai at time t given that the system was in state aj at time t � 1). In the following

they will be written as Pstjst�1
. The prior probabilities for the initial state are expressed

as Pi
:
= Ps1=ai = Ps1 . Finally pi(ot)

:
= pst=ai(ot) = pst(ot) are the output probabilities

for each state2. The Viterbi algorithm provides a formal technique for �nding the most

likely state sequence associated with a given observation sequence. To adjust the model

parameters (transition probabilities P (st�1jst), output probabilities parameters pst(ot) and

prior state probabilities Ps1) such that they maximize the probability of the observation

given the model an iterative procedure { such as the JLO 4.5 or Baum-Welch algorithm{

is needed.

In LAFTER a continuous real-time HMM system computes the maximum likelihood of

the input sequence with respect to all the models during the testing or recognition phase.

Note that the observations that feed the HMMs are not the raw signals coming from the

computer vision modules, but the predictions provided by a Kalman Filter that tracks each

of the blobs {or features of{ of interest. LAFTER runs on an SGI Indy, with the low-

level vision processing occurring on a separate Indy or Pentium PC, and communications

occurring via a socket interface.

5.1.2 Mouth Feature Vector Extraction

The mouth shape is characterized by its area, its spatial eigenvalues (e.g., width and height)

and its bounding box. Figure 5-1 depicts the extracted mouth feature vector. The use

of this feature vector to classify facial expressions has been suggested by psychological

experiments [275, 156], which examined the most important discriminative features for

expression classi�cation.

Rotation invariance is achieved by computing the face's image-plane rotation angle and

rotating the region of interest with the negative of this angle. Therefore even though the

2The output probability is the probability of observing ot given state ai at time t
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Figure 5-1: Mouth feature vector extraction

user might turn the head the mouth always appears nearly horizontal, as �gure 3-6 in

chapter 3 illustrates.

Using the mouth shape feature vector described above, 5 di�erent HMMs were trained

for each of the following mouth con�gurations (illustrated in �gure 5-2): neutral or default

mouth position, extended/smile mouth, sad mouth, open mouth and extended+open mouth

(such as in laughing).

Figure 5-2: Open, sad, smile and smile-open recognized expressions.

The neutral mouth acted to separate the various expressions, much as a silence model

acts in speech recognition. The �nal HMM structure was determined using 10-fold cross-

validation (described in section 4.7.1) derived for the non-neutral mouth con�gurations

consisted of 4-state forward HMMs. The neutral mouth was modeled by a 3-state forward

HMM.

Recognition results for eight di�erent users making over 2000 expressions are summa-
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rized in table 5.1. The data were divided into di�erent sets for training and testing purposes.

The �rst line of the recognition results shown in table 5.1 corresponds to training and test-

ing with all eight users. The total number of examples is denoted by N, having a total

N=2058 instances of the mouth expressions (N=750 for training and N=1308 for testing).

The second line of the same table corresponds to person-speci�c training and testing. As

can be seen, accurate classi�cation was achieved in each case.

TEST ON:

TRAIN ON: training testing

All users 97.73 95.95
Single user 100.00 100.00

Table 5.1: Facial expression recognition results on training and testing data

5.1.3 Applications

In the following I will brie
y describe a number of applications of LAFTER. Many of

them have been extensively tested on naive users during the Media Lab's open houses and

scienti�c conferences demonstration sessions.

Automatic Camera Man

The static nature of current video communication systems induces extra articulatory tasks

that interfere with real world activity. For example, users must keep their head (or an

object of interest) within the �eld of the camera (or of the microphone) in order to be

perceived by distant parties. As a result, the user ends up being more attentive to the way

how to using the interface than to the conversation itself. The communication is therefore

degraded instead of enriched.

In this sense, LAFTER, with its active camera face tracking acts as an "automatic

camera man" that is continuously looking at the user while he/she moves around or gestures

in a video-conference session. In informal teleconferencing testing, users have con�rmed that

this capability signi�cantly improves the usability of the teleconferencing system.
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Experiences with a virtual window system

Some of the limitations of traditional media spaces -with respect to the visual information-

are [76]: restricted �eld of view on remote sites by the video, limited video resolution,

spatial discontinuity, medium anisotropy and very restricted movement with respect to

remote spaces. Each of these negatively a�ects the communication in a media space, with

movement one of the most in
uential, as Gibson emphasized in [85]. Motion allows us to

increase our �eld of view, can compensate for low resolution, provides information about

the three-dimensional layout and allow people to compensate for the discontinuities and

anisotropies of current media spaces, among other factors. Therefore, not only allowing

movement in local media spaces is a key element for desktop mediated communication

and video-conference systems -as I have previously emphasized-, but also the ability of

navigating and exploring the remote site.

The Virtual Window proposed by Gaver [77] illustrates an alternative approach: as the

user moves in front of his local camera, the distant motorized camera is moved accordingly:

exploring a remote site by using head movements opens a broad spectrum of possibilities

for systems design that allow an enriched access to remote partners. Figure 5-3 depicts an

example of a virtual window system.

Active Remote Camera

head motion

for detection of user’s face

Fixed Camera

controlled by user’s

User Exploring

PentiumPro

SGI Indy/

and Camera Control
for Image processing
Main Computer

the remote location

remote location
displaying the
Screen/Monitor

Figure 5-3: The virtual window: Local head positions are detected by the active
tracking camera and used to control a moving camera in the remote site. The e�ect
is that the image on the local monitor changes as if it were a window. The second
image illustrates the virtual window system in use.

One of the main problems that Gaver recognized in his virtual window system was

that its vision controller was too sensitive to lighting conditions and to moving objects.

Consequently, the tracking was unstable; users were frustrated and missed the real purpose

of the system when experiencing it.

I found that by incorporating LAFTER's face tracker into a Virtual Window system,
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users could successfully obtain the e�ect of a window onto another space. To the best of

our knowledge this is the �rst real-time robust implementation of the virtual window. In

informal tests, users reported that the LAFTER-based virtual window system gives a good

sense of the distant space.

Real-time computer graphics animation

Because LAFTER continuously tracks face location, image-plane face rotation angle, and

mouth shape, it is a simple matter to use this information to obtain real-time animation

of a computer graphics character. This character can, in its simplest version, constantly

mimic what the user does (as if it where a virtual mirror) or, in a more complex system,

understand (recognize) what the user is doing and react to it. A \virtual mirror" version

of this system | using the character named Waldorf shown in �gure 5-4 | was exhibited

in the Digital Bayou section of SIGGRAPH'96 in New Orleans.

Figure 5-4: Real time computer graphics animation

Responsive Portraits

A responsive portrait [230] consists of a multiplicity of views whose dynamic presentation

results from the interaction between the viewer and the image. The viewer's proximity to the

image, head movements, and facial expressions elicit dynamic responses from the portrait,

driven by the portrait's own set of autonomous behaviors [229]. Figure 5-5 illustrates one

example of the interaction between the user and the portrait. This type of interaction

reproduces an encounter between two people: the viewer and the character portrayed.

The perceptual system of a responsive portrait is implemented using LAFTER. Figure 5-6

depicts the system architecture of a responsive portrait.
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Figure 5-5: Responsive Portrait typical interaction

Figure 5-6: Responsive Portrait system architecture

The experience of an individual viewer with the portrait is unique, because it is based

on the dynamics of the encounter rather than on the existance of a unique, ideal portrait of

the subject. A responsive portrait, thus, challenges our notion of the photographic portrait

as a unique image that captures the essence of the subject. In a responsive portrait the

whole notion of "who is watching who" is reversed: the object becomes the subject, the

subject is observed. By layering a multiplicity of images of the portrayed person on the same

interactive display and o�ering a natural interactive interface and mapping modalities, an

extended set of expressive communication abilities is available to the artist photographer.

Also, through this artwork, new venues are described for the design of interactive photo

exhibitions for galleries and museums.
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Preferential Coding

Finally, LAFTER can be used as the front-end to a preferential image coding system. It is

well-known that people are most sensitive to coding errors in facial features. Thus it makes

sense to use a more accurate (and more expensive) coding algorithm for the facial features,

and a less accurate (and cheaper) algorithm for the remaining image data [63, 170, 5].

Because the location of these features is detected by our system, this coding scheme can be

used. The improvement obtained by such system is illustrated in �gure 5-7.

Figure 5-7: Preferential coding: the �rst image is the JPEG 
at encoded image
(File size of 14.1Kb); the second is a very low resolution JPEG encoded image using

at coding (File size of 7.1Kb); the third one is a preferential coding encoded image
with high resolution JPEG for the eyes and mouth but very low resolution JPEG
coding for the face and background (File size of 7.1Kb).

5.2 Interaction Models via CHMMs

As we have seen in section 4.10 even though HMMs are a popular probabilistic framework

for modeling processes that have structure in time, many interesting systems are composed

of multiple interacting processes, and thus merit a compositional representation of two or

more variables. This is typically the case for systems that have structure both in time and
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space. With a single state variable, Markov models are ill-suited to these problems. In

order to model these interactions a more complex architecture is needed.

Extensions to the basic Markov model generally increase the memory of the system

(durational modeling), providing it with compositional state in time. I am interested in

systems that have compositional state in space, e.g., more than one simultaneous state

variable. It is well known that the exact solution of extensions of the basic HMM to 3 or

more chains is intractable. In those cases approximation techniques are needed ([216, 83]

[228, 268]). However, it is also known that there exists an exact solution for the case of 2

interacting chains, as it is our case [216, 28].

In this thesis I use and validate with real data two Coupled Hidden Markov Models

(CHMMs) for modeling two interacting processes: hands, individual humans or cars. As it

has been described in detail in section 4.11 of chapter 4, in this architecture state chains

are coupled via matrices of conditional probabilities modeling causal (temporal) in
uences

between their hidden state variables. The graphical representation of CHMMs is shown

in �gure 4-15 (d). From the graph it can be seen that for each chain, the state at time t

depends on the state at time t� 1 in both chains. The in
uence of one chain on the other

is through a causal link.

I have develop two testbeds that validate the suitability of CHMMs for recognizing and

predicting interactive behaviors. First, two-hand gestures in Tai-Chi and second pedestrian

interactions in a visual surveillance task.

5.3 CHMMs for Tai-Chi Gesture Recognition

The �rst experiment to validate how appropriate CHMMs are for modeling and recognizing

interactive behaviors is a Tai-Chi gesture recognition system [30]. Tai-Chi ch'uan is a

Chinese martial art and meditative exercise, consisting of stylized full-body and upper-

body gestures. Many gestures, indeed, most signals generated by human activity are the

result of multiple interacting processes. In gesture, the arms are neither independent nor

wholly mutually determined; some form of interactional modeling is appropriate.

Using a real-time self-calibrating, 3-D stereo blob tracker [13], I obtained 3D hand track-

ing data for three Tai-Chi gestures involving two, semi-independent arm motions: the left

single whip, the left cobra, and the left brush knee. Figure 5.3 illustrates one example of
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each of the gestures and the blob-tracking. A detailed description of this set of Tai-Chi

experimental results can be found in [30] and viewed at

http://nuria.www.media.mit.edu/~nuria/chmm/taichi.html. An Extended Kalman

�lter (EKF) tracks the blobs' location, coarse shape, color pattern, and velocity. This

information is represented as a low-dimensional, parametric probability distribution func-

tion (pdf) composed of a mixture of Gaussians, whose parameters (su�cient statistics and

mixing weights for each of the components) are estimated using Expectation Maximization

(EM) (described in section 4.7.3).

The visual input, thus, detects and tracks the user's hands and head in 3D and outputs

a feature vector describing the position and motion. These output feature vectors constitute

the temporally ordered stream of data input to the stochastic state-based behavior models.

Both HMMs and CHMMs, with varying structures depending on the complexity of the

behavior, were used for classifying the observed behaviors.

Data collection

A total of 52 sequences, roughly 17 of each gesture, were collected. The extracted feature

vector consisted of the 3D (x; y; z) centroid (mean position) of each of the blobs that char-

acterize the hands. All the gestures were performed by the same person, seated in a swivel

chair and moving her upper body and hands. Each gesture began with both hands in a rest

or neutral position and ended with the hands in a gesture-speci�c �nal position or returning

to neutral position. The experiments were oriented to a single word recognition task; the

extension to continuous gesture trains is the same as with conventional HMMs. The main

sources of noise were blob instabilities, variations in the performance of each gesture, and

variations in initial body rotation and position from sequence to sequence. The extracted

feature vector, being simple (x; y; z) positions, re
ects this noise directly.

The frame rate of the vision system varied from 15-30 Hz. The data was resampled using

timestamped frames and cubic spline interpolation to produce a 30Hz signal, then low-pass

�ltered with a 3Hz cuto�. Similar preprocessing is used by Campbell et al. [40], who

converted the feature vector to head-centered cylindrical coordinates derivatives (dr; d�; dz)

for rotation and shift invariance. In the experiments reported in this section raw 3D (x; y; z)

coordinates were used.
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Tai-Chi gesture models

The best trained HMMs and CHMMs {using 10-fold crossvalidation (explained in section

4.7.1){ were used to classify the full data set of 52 gestures. The Viterbi algorithm was

used to �nd the maximum likelihood model for HMMs and CHMMs. Two-thirds of the

testing data had not been seen in training, including gestures performed at varying speeds

and from slightly di�erent views.

It can be seen from the classi�cation accuracies, shown in table 5.4, that the CHMMs

outperform the HMMs. Note that this di�erence is not purely due to intrinsic modeling

power, however; from earlier experiments [40] we know that when a large number of train-

ing samples is available then HMMs could potentially reach similar accuracies. One can

conclude thus that for data where there are two partially-independent processes (e.g., coor-

dinated but not exactly linked), the CHMM method requires much less training to achieve

a high classi�cation accuracy.

Recognition Results on Tai-Chi Gestures

Single HMMs Coupled HMMs (CHMMs)

Accuracy 69.2% (25+30+180) 100% (27+18+54)

Table 5.2: Recognition accuracies for HMMs and CHMMs on Tai-Chi gestures.
The expressions between parenthesis correspond to the number of parameters of the
largest best-scoring model.

Table 5.4 illustrates the source of this training advantage. The numbers between paren-

thesis correspond to the number of degrees of freedom in the largest best-scoring model:

state-to-state probabilities + output means + output covariances. The conventional HMM

has a large number of covariance parameters because it has a 6-D output variable; whereas

the CHMM architecture has two 3-D output variables. In consequence, due to their larger

dimensionality HMMs need much more training data than equivalent CHMMs before yield-

ing good generalization results.

Sensitivity analysis

HMMs are notoriously sensitive to the random values assigned to parameters at initial-

ization of training. To test the sensitivity of �nal model likelihoods to initial conditions, I

randomly initialized each architecture, trained it on 5 examples of a gesture taken randomly,
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and tested it on all sequences of that gesture. This was repeated 50 times per gesture and

architecture. The likelihoods of the testing sets conditioned on recovered models was com-

puted and mean and variance statistics were computed for each gesture and model. The

resulting Gaussian distributions are depicted in �gure 5-10, which shows the probability dis-

tribution of the per gesture likelihood for coupled (CHMMs), linked (LHMMs) (described

in section 4.10.1) and single HMMs.

As may be expected, conventional HMMs were extremly sensitive to the initial values

of the parameters. Linked HMMs were generally less sensitive, with a sensitivity (variance)

that appears to depend on the structure of the gesture. Finally, coupled HMMs were most

robust with respect to the initial conditions, and on average produced the best models {even

in the case of the single whip, in which one hand is mostly stationary. In sum, CHMMs

reliably produce better models{ a highly desirable feature for a trained classi�er.

These results also show why the HMMs performed as well as they did in the classi�-

cation test. In choosing the best-of-50, I took models from the right (optimal) end of the

distribution. Had typical models been picked (the mean), the HMMs would have done

quite a bit worse than their already mediocre performance.

5.4 CHMMs for Pedestrian Interaction Recognition in a

Visual Surveillance Task

The goal of the third testbed is to develop a framework for detecting, classifying and learning

generic models of behavior in a visual surveillance situation. It is important that the models

be generic, applicable to many di�erent situations, rather than being tuned to the particular

viewing or site. This was one of the main motivations for developing the virtual agent

environment {described in section 5.4.3{ for modeling behaviors. If the synthetic agents

are \similar" enough in their behavior to humans, then the same models that were trained

with synthetic data should be directly applicable to human data. This section describes the

experiments I that have performed analyzing real pedestrian data using both synthetic and

site-speci�c models (models trained on data from the site being monitored).

165



5.4.1 Previous Work in Visual Surveillance

There is extensive previous work on building visual surveillance systems, mostly for security

applications. However, very few of these systems are able to automatically interpret the

video sequences. In this section I will enumerate few of the most remarkable visual surveil-

lance systems that incorporate some kind of recognition or interpretation of the video scenes.

The system developed by Buxton and Gong [39] is one of the �rst visual surveillance systems

that interpreted the image sequences by means of Bayesian Networks (BNs) and Dynamic

Bayesian Networks (DBNs). Courtney ([48]) developed a system, which allows for detection

activities in a closed environment. The activities include person leaving an object in a room,

or taking it out of the room. Perhaps the most complete general solution is described in

Brill at al. ([35]), who are working on an Autonomous Video Surveillance system. Brand

([29])) showed the results of detecting manipulations in video using a non-probabilistic

grammar. This technique is non-probabilistic and requires relatively high quality low-level

detectors. Davis and collaborators have developed a number of systems for real-time de-

tection and tracking of multiple people, with some interpretation of the visual scene [88].

Their W4 system is a PC based real-time visual surveillance system for tracking people and

their body parts, and monitoring their activities in monochromatic imagery. It operates

on grayscale video imagery, or on video imagery from an infrared camera. Unlike other

systems for tracking people, their system makes no use of color cue. Instead W4 employs

a combination of shape analysis, robust tracking techniques, and a silhouette based body

model to locate and track the people and understand the interaction between people and

objects - e.g., people exchanging objects, leaving objects in the scene. In [112] and [234]

di�erent methods for classifying the trajectories of the tracked objects are used. None of the

systems, however, is intended to provide an interpretation of the image sequence. Finally,

in [102] a monitoring system is described as an example of an end-to-end implementation,

which is adaptive to the physical features of the monitored environment and exhibits cer-

tain contextual awareness. Contextual labeling is performed by a stochastic parser, which is

derived from that developed by Stolcke in [235]. The authors extended standard Stochastic

Context-Free Grammar (SCFG) parsing to include (1) uncertain input symbols, and (2)

temporal interval primitives that need to be parsed in a temporally consistent manner. The

system is capable of maintaining concurrent interpretations when multiple activities are

taking place simultaneously. Furthermore, the system allows for interpretation of activities
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involving multiple objects, such as interactions between cars and people during PICK-UP

and DROP-OFF. Their experimental results are remarkable. However in the current system

the rule probabilities (grammar structure) need to be speci�ed by hand as opposed to being

automatically learnt from data, as it is the case of the models built in this thesis.

5.4.2 Interaction Models

In this visual surveillance situation the perceived behaviors are generated by pedestrians

walking in an open outdoor environment. The goal from the behavior modeling viewpoint

is to develop a generic, compositional analysis of the observed behaviors in terms of states

and transitions between states over time in such a manner that (1) the states correspond

to our common sense notions of human behaviors, and (2) they are immediately applicable

to a wide range of sites and viewing situations. Figure 5-11 (left) shows a typical image for

the pedestrian scenario.

I use two CHMMs for modeling two interacting processes, that, in this case, correspond

to individual humans. In this pedestrian surveillance task the performance of HMMs and

CHMMs is compared for maximum a posteriori (MAP) state estimation. The most likely

sequence of states Ŝ within a model given the observation sequence O = fo1; : : : ; ong is

obtained by Ŝ = argmaxS P (SjO).

The posterior state sequence probability P (SjO) for a HMM is given by equation 5.1.

As it has been stated in chapter 4, in the case of CHMMs it is necessary to introduce

another set of probabilities (see section 4.11 for a detailed description), Pstjs0t�1
, which

correspond to the probability of state st at time t in one chain given that the other chain |

denoted hereafter by superscript 0 | was in state s0t�1 at time t�1. These new probabilities

express the causal in
uence (coupling) of one chain to the other. The posterior state

probability for CHMMs is therefore given by equation 5.2:

P (SjO) =
Ps1p(o1js1)Ps01p(o

0
1js

0
1)

P (O)

TY
t=2

Pstjst�1
Ps0tjs0t�1

Ps0tjst�1
Pstjs0t�1

p(otjst)p(o
0
tjs

0
t)

where st; s
0
t; ot; o

0
t denote states and observations for each of the Markov chains that compose

the CHMMs.

Coming back to the problem of modeling human behaviors, two persons (each modeled

as a generative process) may interact without wholly determining each others' behavior.
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Instead, each of them has its own internal dynamics and is in
uenced (either weakly or

strongly) by others. The probabilities Pst js0t�1
and Ps0tjst�1

describe this kind of interactions

and CHMMs are intended to model them in as e�cient a manner as is possible.

5.4.3 Prior Models via Synthetic Behavioral Agents

One of the key contributions of this thesis is the use of a new way for designing priors,

as section 4.12 describes. For this particular pedestrian surveillance application, I have

developed a framework for creating synthetic agents that mimic human behavior in a virtual

environment [174, 208]. The agents can be assigned di�erent behaviors and they can interact

with each other as well. Currently they can generate 5 di�erent interacting behaviors and

various kinds of individual behaviors (with no interaction). The parameters of this virtual

environment are modeled on the basis of a real pedestrian scene from which measurements

of typical pedestrian movement were obtained.

One of the main motivations for constructing such synthetic agents is the ability to

generate synthetic data which allows to determine which Markov model architecture will

be best for recognizing a new behavior (since it is di�cult to collect real examples of

rare behaviors). By designing the synthetic agents models such that they have the best

generalization and invariance properties possible, one can obtain 
exible prior models that

are transferable to real human behaviors with little or no need of additional training. The

use of synthetic agents to generate robust behavior models from very few real behavior

examples is of special importance in a visual surveillance task, where typically the behaviors

of greatest interest are also the most rare.

Agent Architecture

The dynamic multi-agent system consists of some number of agents that perform some

speci�c behavior from a set of possible behaviors. The system starts at time 0, moving

discretely forward to time T or until the agents disappear from the scene.

The agents can follow three di�erent paths with two possible directions, as illustrated

in �gures 5-12 and 5-13 by the yellow paths 3. They walk with random speeds within an

3The three paths were obtained by statistical analysis of the most frequent paths that the pedestrians
in the observed plaza followed. Note however that the performance of neither the computer vision nor the
tracking modules is limited to these three paths.
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interval, and they appear at random instances of time. They can slow down, speed up,

stop or change direction independently from the other agents on the scene. Their velocity

is normally distributed around a mean that increases or decreases when they slow down

or speed up. When certain preconditions are satis�ed a speci�c interaction between two

agents takes place. Each agent has perfect knowledge of the world, including the position

of the other agents.

In the following I will describe, without loss of generality, the two-agent system that

was used for generating prior models and synthetic data of agents interactions. Each agent

makes its own decisions depending on the type of interaction, its location and the location

of the other agent on the scene. There is no scripted behavior or a priori knowledge of what

kind of interaction, if any, is going to take place. The agents' behavior is determined by

the perceived contextual information: current position, relative position of the other agent,

speeds, paths they are in, directions of walk, etc., as well as by its own repertoire of possible

behaviors and triggering events. The agents incorporate elements of "situation awareness"

in their behavior. For example, if one agent decides to "follow" the other agent, it will

proceed on its own path increasing its speed progressively until reaching the other agent,

that will also be walking on the same path. Once the agent has been reached, they will

adapt their mutual speeds in order to keep together and continue advancing together until

exiting the scene.

For each agent the position, orientation and velocity is measured, and from this data a

feature vector is constructed which consists of: _d12, the derivative of the relative distance

between two agents; �1;2 = sign(< v1; v2 >), or degree of alignment of the agents, and

vi =
p
_x2 + _y2; i = 1; 2, the magnitude of their velocities. Note that such feature vector is

invariant to the absolute position and direction of the agents and the particular environment

they are in.

Agent Behaviors

The agent behavioral system is structured in a hierarchical way. There are primitive or

simple behaviors and complex interactive behaviors to simulate the human interactions.

In the experiments reported in this section �ve di�erent interacting behaviors were

considered. They appear illustrated in �gures 5-12 and 5-13:

1. Follow, reach and walk together (inter1): The two agents happen to be on the same
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path walking in the same direction. The agent behind decides that it wants to reach

the other. Therefore it speeds up in order to reach the other agent. When this happens

it slows down such that they keep walking together with the same speed.

2. Approach, meet and go on separately (inter2): The agents are on the same path but in

opposite direction. When they are close enough, if they realize that they "know" each

other, they slow down and �nally stop to chat. After talking they go on separately,

becoming independent again.

3. Approach, meet and go on together (inter3): In this case, the agents behave like in

"inter2", but now after talking they decide to continue together. One agent changes

therefore its direction to follow the other.

4. Change direction in order to meet, approach, meet and continue together (inter4):

The agents start on di�erent paths. When they are close enough they can see each

other and decide to interact. One agent waits for the other to reach it. The other

changes direction in order to go toward the waiting agent. Then they meet, chat for

some time and decide to go on together.

5. Change direction in order to meet, approach, meet and go on separately (inter5): This

interaction is the same as "inter4" except that when they decide to go on after talking,

they separate becoming independent.

Proper design of the interactive behaviors requires the agents to have knowledge about

the position of each other as well as synchronization between the successive individual behav-

iors activated in each of the agents. Figure 5-14 illustrates the timeline and synchronization

of the simple behaviors and events that constitute the interactions.

These interactions can happen at any moment in time and at any location, provided

only that the precondititions for the interactions are satis�ed. The speeds they walk at, the

duration of their chats, the changes of direction, the starting and ending of the actions vary

highly. This high variance in the quantitative aspects of the interactions confers robustness

to the learned models that tend to capture only the invariant parts of the interactions. The

invariance re
ects the nature of their interactions and the environment.
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5.4.4 Performance Comparison of CHMM and HMM architectures with

Synthetic Agent Data

Both CHMM and HMMmodels of the �ve previously described synthetic agent interactions

were built. In the case of CHMMs 2 or 3 states per chain were used, and 3 to 5 states in

the case of HMMs (accordingly to the complexity of the various interactions). The optimal

number of training examples, of states for each interaction as well as the optimal model

parameters were obtained by a 10-fold cross-validation process (for a description of cross-

validation see section 4.7.1). Because the same amount of data was used for training both

architectures, I tried keeping the number of parameters to estimate roughly the same.

For example, a 3 state (N = 3) per chain CHMM with 3 dimensional (d = 3) Gaussian

observations has (CN)2+N � (d+d!) = (2�3)2+3� (3+6) = 36+27 = 63 parameters. A 5

state (N = 5) HMMwith 6 dimensional (d = 6) Gaussian observations hasN2+N�(d+d!) =

52 + 5 � (3 + 6) = 25 + 45 = 70 parameters to estimate.

Each of these architectures corresponds to a di�erent physical hypothesis: CHMMs

encode a spatial coupling in time between two agents (e.g., a non-stationary process) whereas

HMMs model the data as an isolated, stationary process. From 11 to 75 sequences were

used for training each of the models, depending on their complexity, such that over�tting

was avoided. In all cases, the models were set up with a full state-to-state connection

topology, so that the training algorithm was responsible for determining an appropriate

state structure for the training data. The feature vector was 6-dimensional in the case of

HMMs, whereas in the case of CHMMs each agent was modeled by a di�erent chain, each

of them with a 3-dimensional feature vector, as previously described.

To compare the performance of the two previously described architectures I used the

best trained models to classify 20 unseen new sequences. In order to �nd the most likely

model, the Viterbi algorithm was used for HMMs and the N-heads dynamic programming

forward-backward propagation algorithm for CHMMs.

Table 5.3 illustrates the accuracy for each of the two di�erent architectures and interac-

tions. Note the superiority of CHMMs versus HMMs for classifying the di�erent interactions

and, more signi�cantly, identifying the case in which there were no interactions present in

the testing data.

Complexity in time and space is an important issue when modeling dynamic time se-

ries. The number of degrees of freedom (state-to-state probabilities+output means+output
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Accuracy on synthetic test data (%)

HMMs CHMMs

No inter 68.7 90.9

Inter1 87.5 100

Inter2 85.4 100

Inter3 91.6 100

Inter4 77 100

Inter5 97.9 100

Table 5.3: Accuracy for HMMs and CHMMs on synthetic data. Accuracy at rec-
ognizing when no interaction occurs (\No inter"), and accuracy at classifying each
type of interaction: \Inter1" is follow, reach and walk together; \Inter2" is approach,
meet and go on; \Inter3" is approach, meet and continue together; \Inter4" is change
direction to meet, approach, meet and go together and \Inter5" is change direction
to meet, approach, meet and go on separately

covariances) in the largest best-scoring model was 85 for HMMs and 54 for CHMMs.

An analysis of the accuracies of the models and architectures with respect to the number

of sequences used for training was also performed. E�ciency in terms of training data is

specially important in the case of on-line real-time learning systems -such as ours would

ultimately be- and/or in domains in which collecting clean labeled data may be di�cult.

The cross-product HMMs that result from incorporating both generative processes into

the same joint-product state space usually requires many more sequences for training be-

cause of the larger number of parameters. In our case, this appears to result in a accuracy

ceiling of around 80% for any amount of training that was evaluated, whereas CHMMs were

able to reach approximately 100% accuracy with only a small amount of training. From

this result it seems that the CHMMs architecture, with two coupled generative processes, is

more suited to the problem of modeling the behavior of interacting agents than a generative

process encoded by a single HMM.

In a visual surveillance system the false alarm rate is often as important as the clas-

si�cation accuracy. In an ideal automatic surveillance system, all the targeted behaviors

should be detected with a close-to-zero false alarm rate, so that one could reasonably alert

a human operator to examine them further. To analyze this aspect of our system's perfor-

mance, the system's ROC curve was calculated. The left-most graph in �gure 5-16 shows

that it is quite possible to achieve very low false alarm rates while still maintaining good

classi�cation accuracy.
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5.4.5 Pedestrian Behavior Recognition

Data Collection and Preprocessing

Using the person detection and tracking system described in section 3.2 2D blob features

for each person in several hours of video were obtained. Up to 20 examples of following and

various types of meeting behaviors were detected and processed.

The feature vector �x coming from the computer vision processing module consisted of

the 2D (x; y) centroid (mean position) of each person's blob, the Kalman Filter state for

each instant of time, consisting of (x̂; _̂x; ŷ; _̂y), where :̂ represents the �lter estimation, and

the (r; g; b) components of the mean of the Gaussian �tted to each blob in color space. The

frame-rate of the vision system was of about 20-30 Hz on an SGI R10000 O2 computer. I

low-pass �ltered the data with a 3Hz cuto� �lter and computed for every pair of nearby

persons a feature vector consisting of: _d12, derivative of the relative distance between two

persons, jvij; i = 1; 2, norm of the velocity vector for each person, � = sign(< v1; v2 >),

or degree of alignment of the trajectories of each person. Typical trajectories and feature

vectors for an \approach, meet and continue separately" behavior (interaction 2) are shown

in �gure 5-15. This is the same type of behavior as "inter2" displayed in �gure 5-12 for the

synthetic agents. Note the similarity of the feature vectors in both cases.

Behavior Models

CHMMs were used for modeling three di�erent behaviors: meet and continue together

(interaction 3); meet and split (interaction 2) and follow (interaction 1). In addition, an

interaction versus no interaction detection test was also performed. HMMs performed much

worse than CHMMs and therefore I omit reporting their results.

Models trained with two types of data were used:

1. Prior-only (synthetic data) models: that is, the behavior models learned in our syn-

thetic agent environment and then directly applied to the real data with no additional

training or tuning of the parameters.

2. Posterior (synthetic-plus-real data) models: new behavior models trained by using as

starting points the synthetic best models. In this case, 8 examples of each interaction

data from the speci�c site were used.
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Recognition accuracies for both these \prior" and \posterior" CHMMs are summarized in

table 5.4. It is noteworthy that with only 8 training examples, the recognition accuracy on

the real data could be raised to 100%. This results demonstrates the ability to accomplish

extremely rapid re�nement of the behavior models from the initial prior models.

Accuracy on real pedestrian test data (%)

Prior Posterior
CHMMs CHMMs

No-inter 90.9 100

Inter1 93.7 100

Inter2 100 100

Inter3 100 100

Table 5.4: Accuracy for both untuned, a priori models and site-speci�c CHMMs
tested on real pedestrian data. The �rst entry in each column is the interaction vs
no-interaction accuracy, the remaining entries are classi�cation accuracies between
the di�erent interacting behaviors. Interactions are: \Inter1" follow, reach and walk
together; \Inter2" approach, meet and go on; \Inter3" approach, meet and continue
together.

Finally the ROC curve for the posterior CHMMs is displayed in �gure 5-16.

One of the most interesting results from these experiments is the high accuracy obtained

when testing the a priori models obtained from synthetic agent simulations. The fact that

a priori models transfer so well to real data demonstrates the robustness of the approach.

It shows that with the proposed synthetic agent training system, one can develop models of

many di�erent types of behavior | avoiding thus the problem of limited amount of training

data | and apply these models to real human behaviors without additional parameter

tuning or training.

Parameter Sensitivity In order to evaluate the sensitivity of the classi�cation accuracy

to variations in the model parameters, a set of models was trained, where di�erent parame-

ters of the agents' dynamics were changed by factors of 2:5 and 5. The performance of these

altered models turned out to be virtually the same in every case except for the \inter1"

(follow) interaction, which seems to be sensitive to people's relative rates of movement.
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Figure 5-8: Hand tracking of three Tai-Chi gestures: selected frames overlaid with
hand blobs from vision. The bottom-most graph shows the evolution of the feature
vector over time
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Figure 5-9: Classi�cation by the CHMM, LHMM, and HMM, showing per-
sequence normalized log likelihood. Only the CHMM attains the right discrimi-
nation structure
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Figure 5-10: Likelihood probability distribution for each HMM type, learning
single whip, cobra, and brush knee gestures, respectively. The CHMM consistently
has the highest likelihood and the tightest distribution.
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Figure 5-11: Visual surveillance system
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Figure 5-12: Example trajectories and feature vector for the interactions: follow,
approach+meet+continue separately, and approach+meet+continue together
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Figure 5-13: Example trajectories and feature vector for the interac-
tions: change direction+approach+meet+continue separately, change direc-
tion+approach+meet+continue together, and no interacting behavior
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Figure 5-15: Example trajectories and feature vector for interaction 2, or approach,
meet and continue separately behavior.
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Figure 5-16: First �gure: ROC curve on synthetic data. Second Figure: ROC
curve on real human data.
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5.5 Dynamic Graphical Models for Driver Behavior Recog-

nition and Prediction in a SmartCar

5.5.1 Motivation

To collect driving data in a real car, I have developed a platform for driver maneuver

recording and recognition in a real car. By modeling driver behavior I mean building

machine models of typical driver maneuvers, such as changing lanes or passing another car.

The goal is that the car, by assisting {as opposed to replacing{ the driver, would make of

driving a safer and easier experience.

Before the invention of the automobile, most forms of human transportation involved

some kind of biological intelligence. For example, a rider could always rely on the horse's

self-preservation instincts to avoid obstacles, or its sense of direction to �nd the way home

[237]. Currently, the automobile possesses neither: a moment's inattention on the driver

could cause the car to leave its lane, or crash into a nearby vehicle. Government studies

attribute 96:2% of accidents in United States to driver error [244]. A large fraction of

these deaths could be prevented by the introduction of intelligent systems with the ability

of understanding the driver's behaviors and contextual situation. Such systems could, for

example, warn the driver or automatically adjust some control parameters in the vehicle

to improve safety. In consequence, these "smart vehicles" could somehow recapture the

lost intelligence of the �rst transportation systems. Therefore an important motivation for

developing machine models of driver behavior is to improve human driver performance.

Moreover driving is an important, natural-feeling, familiar and culturally assimilated

type of human behavior that exhibits complex patterns lasting for several seconds. From

an experimental viewpoint, it is important that the number of distinct driving behaviors is

limited by the heavily engineered nature of the road system and driving rules. Furthermore,

it is feasible to instrument a car to do data acquisition. These characteristics make driving

a very suited and interesting testbed for modeling human behaviors.

The fact that humans learn how to drive and improve with experience suggests that a

smart car should be able to acquire better and better understanding of driving by being

exposed to di�erent tra�c situations. Although machine learning has been successfully

applied to operational-level tasks, such as lane-tracking [190, 189] and trailer-truck docking

[266], there are remarkably very few systems that have even attempted to apply machine
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learning to tactical-level driving [266, 184, 70], and even fewer, if any, that have modeled

driver behavior in real driving situations beyond simulators. This is an important contri-

bution of this thesis.

One critical issue in machine-human interface systems are the transitions between man-

ual and automated operation. They should be as seemless and smooth as possible. Such

transitions would occur, for example, when the system encounters non-supported situations,

when it fails, returning to manual mode; or when initiated by the driver. In any case, it

is very important not to interfere with the driver's intended maneuver, specially in emer-

gency situations, and to avoid discontinuities in the system, inducing feelings of incongruity

while driving. Therefore, developing systems for predicting the driver's next maneuver or

inferring driver's intentions is imperative to facilitate smooth and appropriate control mode

transitions.

Building e�ective driver behavior recognition methods requires a thorough understand-

ing of driver behavior and the construction of a model capable of both generating and

explaining the drivers' behavioral characteristics. The task of driving has traditionally

been characterized as consisting in three di�erent levels: strategic, tactical and operational

[103]. At the highest (strategic) level, a route is planned and goals are determined; at the

intermediate (tactical) level, maneuvers are selected to achieve short-term objectives {such

as deciding whether to pass a blocking vehicle{; and at the lowest (operational) level, those

maneuvers are translated into control operations. In this thesis I focus on recognizing driv-

ing maneuvers at a tactical level. Namely, I have built models of passing, changing lanes

right and left, turning right and left, starting, and stopping.

Previous studies in psychology have found that driver behavior can be characterized

as a sequence of basic actions each associated with a particular state of the driver-vehicle-

environment system and characterized by a set of observable features [90]. This studies

support the computational model proposed in this thesis for human behavior modeling in

general and driver maneuver recognition and prediction in particular.

5.5.2 Previous Work

Human driver modeling is an interdisciplinary endeavor involving a number of �elds includ-

ing robotics, psychology, control theory and statistics. Driving in a real-life tra�c situation

is a very di�cult task because good decisions need to be made given only incomplete in-
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formation in real time. Traditional AI techniques such as search-based planning [68] are

infeasible for at least two reasons: most of these methods cannot function under noisy,

uncertain conditions, and the state-space is extremely large if realistic maneuvers such as

aborted lane changes are taken into account.

The tasks and subtasks involved in human driving could be comprehensively listed as, for

example, McKnight and Adams do in [149]. Unfortunately, since their work is not directed

towards computer implementations, many tasks are di�cult to express computationally.

Some recommended actions such as '[Driver] selects lane relative to car's speed, maneuvers

and tra�c 
ow' are too vague, while others are contradictory. Although human drivers may

be able to understand such tasks easily, the issue of con
ict resolution is not addressed.

Despite these shortcomings, the heuristics may provide good starting points for rule-based

modules. Imprecise rules such as 'Tra�c behind should be checked about every �ve seconds

when there are vehicles also ahead' [262, 149] may be robustly captured by a fuzzy [127]

formulation.

Most of the projects developed in the Intelligent Vehicles community are directed to-

wards automatic navigation of a vehicle. In the majority of the cases the previous work

in tactical-level driving has concentrated on expressing driving knowledge in the form of

rules [167, 130], hand-crafted decision trees [203, 239], �nite state machines [50], Dynamic

Bayesian Networks (DBNs) [70] or HMMs [184]. Expert systems have been used in other

related �elds with relatively promising results [193, 210]. In [70] a new approach for au-

tonomous vehicle driving in normal tra�c is proposed. The authors describe the problem

as a decision-theoretic architecture using dynamic probabilistic networks (DBNs) to repre-

sent and update the belief state. The decision making process is modeled following three

approaches: Partially Observable Markov Decision Process (POMDP), dynamic decision

networks and decision trees. Furthermore there has been relatively substantial research in

the autonomous agents community for building autonomous intelligent vehicles in simulated

environments. One of the most sophisticated systems is the one presented in [240], where

Sukthankar et al propose a distributed reasoning system (PolySAPIENT) with a novel evo-

lutionary optimization strategy (PBIL) for the tactical level of driving. However most of

these systems have only explored greatly simpli�ed aspects of the driving task and none of

them has focused on modeling (learning) explicitly the interactions between the driver and

the surrounding tra�c.
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Driving Taxonomy

The task of driving has traditionally been characterized as consisting in three di�erent levels:

strategic, tactical and operational [103]. At the highest (strategic) level, a route is planned

and goals are determined; at the intermediate (tactical) level, maneuvers are selected to

achieve short-term objectives {such as deciding whether to pass a blocking vehicle{; and at

the lowest (operational) level, those maneuvers are translated into control operations. This

driving taxonomy intersects with the proposed general taxonomy presented in chapter 1,

section 1 as follows: strategic driving corresponds to the complex intentional behaviors with

substantial extent on time; tactical driving corresponds to the so called "communicative

behaviors" that involve the interactions with other possible agents; �nally, driving at a

operational level corresponds to simple, short actions.

Mobile robot research has successfully addressed the three levels to di�erent degrees.

Strategic-level planners [205, 254] have advanced from research projects to commercial prod-

ucts. The operational level has been investigated for many decades, resulting in systems

that range from semi-autonomous vehicle control [144, 74] to autonomous driving in a vari-

ety of situations [59, 191, 238]. Substantial progress in autonomous navigation in simulated

domains has also been reported in recent years [50, 203, 199]. However the decisions required

at the tactical level are di�cult and a general solution remains elusive.

Tactical-level driving is characterized by the constant battle between long-term goals

and real-time constraints. Drivers must select appropriate maneuvers such as lane changing,

accelerating, and car following given very little knowledge of the intentions of other drivers

in their environment. In this complex and dynamic problem space, optimal solutions are

rarely to be found, but the penalties for bad decisions are clear and severe. Unfortunately

safety cannot be guaranteed, even by conservative driving. Tactical driving thus forces a

careful balance between competition and cooperation: aggressive maneuvering is successful

but not when it results in a crash. Because of these reasons, the driver behavior modeling

framework proposed in this thesis seems quite suitable and appropriate

In the following I will brie
y review some models that have been proposed for explaining

driver behavior at a tactical level.

Task Models Task models de�ne the broad tasks involved in driving (e.g. car following)

and decompose these tasks into detailed subtasks (e.g. headway maintenance). In [149]
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a comprehensive treatment of the situations and actions involved in driving is presented.

However since their report was targeted towards human driver education, most of their

descriptions are too vague to be directly used in tactical computer systems.

A second di�culty with most task models is that the recommendations are often con-

tradictory. As Reece [203] notes, the McKnight and Adams task list includes two subtasks

that instruct drivers to "observe pedestrians and playing children" and to "ignore activity

on the sidewalk that has no impact on driving" without providing any insights as to which

sidewalk activities have no impact on driving. Since these discriminating between these

situations requires "common sense" encoding this knowledge in the form of driving rules

for a reasoning system is challenging.

Task models are nevertheless useful for two reasons. First, they highlight aspects of the

tactical driving task that need to be addressed by a smart vehicle. Second, they provide

insights about mapping observable phenomena into speci�c conditions (e.g. the driver

should initiate an overtaking maneuver in response to a slower vehicle ahead).

Risk Models Risk models for driving have emerged from psychological research in the

area of perceived risk. By combining the decision theoretic notions of expected utility

and the willingness of humans to take "acceptable risks", these models attempt to explain

commonly observed phenomena such as speeding, aggressive driving styles and intoxicated

driving. Intelligent systems exhibiting some degree of situation/contextual awareness may

require sophisticated models of human drivers. Utility functions based on perceived risk

(such as time-to-impact measures) can also be used by reasoning systems to select tactical-

level maneuvers. A representative example of a risk model is Wilde's Risk Homeostasis

Theory. Risk Homeostasis Theory maintains that, in any activity, people accept a certain

level of subjectively estimated risk to their health, safety, and other things they value, in

exchange for the bene�ts they hope to receive from that activity [267].

Counterintuitively risk homeostasis theory predicts that humans adjust their behavior

so as to maintain {rather than minimize{ their perceived risk at a constant set-point risk

level: The degree of risk-taking behavior and the magnitude of loss ... are maintained over

time, unless there is a change in the target level of a risk [267].

A case study, known as the Munich Taxicab Experiment [9] was conducted to test the

implications of risk homeostasis theory under controlled situations. Some vehicles in a taxi
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eet were equipped with an anti-lock braking system (ABS) that allowed drivers to maintain

steering control during hard braking on slippery roads. Conventional wisdom predicted that

the ABS-equipped vehicles would be safer than unequipped vehicles. Surprisingly the results

[9, 267] showed that:

� Among the accidents involving the company's taxis, there was no statistically signif-

icant di�erence between the involvement rate of the two vehicle types (in fact, the

ABS vehicles were involved in slightly more accidents).

� Accident severity was independent of the presence or absence of ABS in the taxi.

� Accelerometers installed in the taxis measured more extreme decelerations (associated

with hard braking) in vehicles equipped with ABS.

� Drivers in ABS cabs made sharper turns in curves, were less accurate in lane-keeping

behavior, maintained shorter headway distances, made poorer merge maneuvers and

created more "tra�c con
icts". All these di�erences were statistically signi�cant.

Therefore risk homeostasis theory, as supported by those experiments, has pessimistic

predictions for any attempt to improve highway safety solely through technology. How-

ever in the context of tactical-level reasoning, risk homeostasis theory provides support for

utility-based approaches to situation awareness.

Information Processing Models Information processing models focus on process con-

trol application domains, where the operators have to control dynamic processes of consid-

erable complexity. To do this they must rely on, and successfully interpret, large quantities

of complex information about the process state. The consequences of failing to attend to,

and correctly interpret, such information can be as costly as the life, such as in driving.

Providing the right "quality" of information for operators has therefore become a key de-

sign goal for interface designers. I will describe some of the information processing models

proposed that are relevant to the driving task:

1. The Operator Functional Model [113] allows the functions of the operator, which are

modelled as a transition graph at the highest level, to be naturally decomposed into

sub-functions, tasks and actions in lower level graph representations. Nodes in the

graphs are functions and tasks etc., whilst the arcs represent events which trigger
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transitions between the nodes. The ability to represent such events makes it more

suitable for dynamic, non-deterministic environments.

2. In the Problem Behavior Graph [165], nodes represent states of knowledge or system

messages and the connecting arcs are operator tasks and actions. This model was

found to be unsuitable for dynamic environments since it has no mechanism for mod-

elling unexpected events such as failures. Each time a new problem context arises, a

whole new sub-graph must be constructed.

3. The Decision Ladder [201] represents decision episodes in a natural manner in sep-

arate diagrams although the transitions between di�erent decision episodes are not

modelled. The Decision Ladder was developed from analyses of process operators and

is therefore suited to this domain. However, it does not provide a formalism su�cient,

in itself, for system design.

4. The Goals-Means Network [96] approach di�ers from the other models in that it

models the structure of complete systems rather than just the human operator. It

is particularly useful for representing the relationships between the system objectives

and the actions required by the operator to achieve the goals. It is less suited for

representing changes in goals and means.

Operator models have usually been developed for the purpose of design. The Decision

Ladder is based around the classi�cation of information processing into three types: skill-

based, rule-based and knowledge-based ([201]). The premise for this theory is that humans

are equipped to control their environment according to abstract objectives and there are

three layers of processing which help them in achieving this.

At the bottom of the hierarchy are the sensory and motor skills (skill-based behavior).

These acts require no conscious control, and function independently of central processing

and working memory. Skill based behavior is often exhibited as people learn to master

a task involving sensimotor processing. Legge and Barber ([140]) describe several theories

about the nature and acquisition of motor skills. In summary, it is believed that our physical

abilities are controlled in two ways. At the most basic level there are direct connections

between stimulus and response. Tracking an object round a screen with a joystick driven

cursor is an example of such behavior. Each time an action is taken (change direction or

speed) the response must be observed and used to determine the next action. Thus it is a
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stimulus-response chain which forms a closed loop with the environment. However, human

beings are also capable of ordering their motor system to perform sequences of actions

without relying on feedback between actions. Writing a signature is an example of this.

Composite actions can be performed in the absence of feedback by executing what is called

a motor program. Such programs (skills) can be built up with practice, and be controlled

by higher levels of cognitive behavior.

In particular, a sequence of actions may be activated by a stored rule or procedure.

This is rule-based behavior or "know-how". Rules and procedures may be derived through

practice or learned from other people or instructional material. The rules which dominate

are those which have been shown to be e�ective in reaching a goal. As Rasmussen ([201], p.

102) says; "The control evolves by the survival of the �ttest rule". This selection process

may not be conscious. Rules are, rather inexplicably, triggered automatically from given

states of knowledge.

In contrast, the highest level - knowledge-based behavior - is invoked by the absence

of previous experience of a situation. In order to handle such a situation, the goal must

be stated explicitly, rather than being implicit in the chosen rule, as described above. The

environment must be analysed and plans for controlling it must be considered. This process

is thought to be aided by a mental model of the environment that is being controlled.

Boer et al. [26], [27] have proposed an integrated driver model (IDM) which borrows

from Rasmussen's and Michon's [103] model and incorporates the concept of the dynamic

aspects of driver behavior as well as an important role of driver needs. Incorporating the

idea of attention management, this model focuses on the switching of intra- or inter- process

levels. It can explain the selection of maneuvers in manual driving but also the operation of

mode transitions in driving assistance systems. An understanding of attention management

or the characteristics of each process level is closely related to an understanding of the

driver's intentions.

Rasmussen's taxonomy provides a framework for the understanding of information pro-

cesses of human perception and cognition. It also broadly maps behavioral types on to the

Decision Ladder. In the initial and �nal phases of the decision task, skills are required. Di-

rect stimulus-response behavior occurs from the attention module to the execution module.

If the problem is relatively well known, a stored rule will be triggered from which short-

cuts can be used to move from observations to direct task selection. Rule based behavior
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resides in the middle. The knowledge based domain is at the top where goals are explicit,

the environment is considered in an abstract way, and plans are evaluated. However, the

way in which the types of behavior are used in conjunction with each other is complex.

Although diverse problem-solving strategies can be used to reach a goal ([87]), it is believed

that people tend to use lower levels of behavior if at all possible ([201]). Essentially human

beings minimise resource usage, and will consequently choose the path of least resistance.

Another point worth noting is that skill-based behavior is developed through practice.

Learning a motor program requires a clear statement of the objective. By repeatedly eval-

uating the outcome against the objective and hypothesising what actions are needed to

match the two, such programs can develop. Thus knowledge-based behavior is employed

to develop skill-based behavior. Early learning can be aided by procedural instructions

(rule-based) such as those received from a driving instructor on how to execute a smooth

gear-change, but real pro�ciency requires practice as well. An interesting fact is that motor

skills, such as riding a bike or driving a car, can be continuously improved after we have

become pro�cient and therefore do so without conscious attention. This second phase of

learning takes little mental e�ort and seems to involve matching of stimuli against an ideal

pattern at a subconscious (skill-based) level.

The problems associated with determining the information processes underlying ob-

servable human behavior are numerous. Rasmussen's work is, to a large extent, based on

verbal protocol analysis of di�erent professional problem solvers ranging from radio techni-

cians to nuclear power plant operators. The studies have been conducted over many years

and constitute a substantial body of knowledge in this �eld. However, it is acknowledged

that verbal protocol analysis may not always reveal the underlying processes. People are

good at articulating rules and procedures, whereas knowledge based behavior is less easy

to verbalise.

Perceptual and Motivational Models Perception models have been used to describe

driver behavior in accidents [251], suggest methods for safer driving [262, 264] and motivate

new collision warning devices [10]. In the tactical driving domain, perceptual models are

particularly relevant in two areas: sensor modeling and driver intentions.

Sensor modeling at the operational level is primarily concerned with tracking objects and

segmentation (low-level actions which humans typically take for granted). At the tactical
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level, the focus shifts to reasoning about object-to-lane mapping, blind spots and occlusions

{task which human drivers perform more consciously{. Unsurprisingly novice drivers are

likely to forget about vehicles which are not currently visible [264]. Perceptual models also

lead to heuristics for safer driving which can be exploited by both humans and intelligent

vehicles (e.g. "At night do not over-drive the range of your headlights").

A smart car must be sensitive to its driver's intentions. Perceptual models can be used to

gain some insights into this area. Recent research [182], [214] shows that drivers' eye �xation

patterns are strongly correlated with their current mental state. Previous studies have found

that driver behavior can be characterized as a sequence of basic actions, each associated

with a particular state of the driver-vehicle-environment system, and characterized by a set

of observable features [90]. In [184], Pentland and Liu researched the modeling of human

action taking into account this observation. Therefore they modeled driver behavior as a

transition of states internal to the driver. They claimed that only driving actions can be

observed and proposed a driver intention and detection method using a four-state Hidden

Markov Model (HMM). This model was intended to capture the sequential nature of these

unobservable internal states that are each associated with a set of observable variables.

Once the HMM had been trained the system was able to predict when the driver is about

to brake or turn. This knowledge may then be used by the smart car to optimize its

behavior for the expected maneuver {in some sense, the situation awareness is shared over

the vehicle-driver system. In this thesis I extend this framework to include the in
uence of

surrounding vehicles (larger and more complex context).

The notion of driver's internal state is fundamental to motivational models. In this

framework, perceptual information is integrated with discrete mental states in an attempt

to predict the actions that the human driver would take in that given situation [245].

This description of human cognitive activity can also involve aspects from utility theory

{generally in the form of a perceived risk factor{. However since they do not describe how

driving knowledge is represented, a large gap exists between the motivational model and its

successful implementation. Although some e�orts have been made to specify motivational

models in a symbolic programming language [2] no successful implementation currently

exists.
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Control Models Control models for drivers are primarily important when modeling op-

erational level phenomena. For example, the well-known "Two second rule" for car following

[163] is based on the observation that humans require approximately 1:75 seconds to iden-

tify and react to a potentially dangerous situation [149]. Lane-keeping and steering models

such as pure-pursuit tracking [255] are valuable at the tactical-level. First, such models can

help the intelligent vehicle predict the future likely positions of observed vehicles. Second,

such models can allow the reasoning system to estimate the time needed to execute a given

maneuver (such as a lane change). Control models can also be applied to plan recognition.

Other control models have been developed in the tra�c simulation domain. The ones

of most interest to tactical driving research are those which model lane-changing [259, 4],

car following [277], and emergency maneuvers [6]. Since these models are computational,

they could be directly incorporated into a tactical reasoning system.

Decision-theoretic models The most successful approaches to modeling tactical-level

driving fall in the framework of decision theory under uncertainty (probability). Forbes et

al [70] propose in the BATmobile project a decision-theoretic architecture using dynamic

probabilistic networks. The architecture provides a sound solution to problems of sensor

noise, sensor failure and uncertainty about the behavior of other vehicles and about the ef-

fects of one's own actions. The real-time decision making is implemented in an approximate

fashion using three di�erent approaches: (1) dynamic decision networks which incorporate

action nodes and an explicit utility function; (2) hand-coded, explicit policy representa-

tions {such as decision trees{ that take as input the joint probability distribution encoded

in the DPN; and (3) supervised learning and reinforcement learning methods for solving

a POMDP, in which they learn a policy representation, a utility function on belief states

or an action-value function on belief-state/action pairs. The design of appropriate utility

functions as well as the use in a real vehicle are two major de�ciencies of their approach.

In [239] two tactical-level reasoning systems are proposed, MonoSAPIENT and PolySAPI-

ENT, to drive autonomously in simulated tra�c. A very complex decision tree is utilized

in MonoSAPIENT. However MonoSAPIENT tree's complexity is unmanageable. Therefore

PolySAPIENT distributes this complicated tree in separate experts tied to relevant physical

entities in the driving environment.
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5.5.3 Summary

As with any other complex and interesting human behavior problem, there is a very broad

and rich spectrum of proposed models of driver behavior. From all of them, the closest

work to this thesis work is that of Pentland and Liu [142, 184], and that of Kuge at al [131].

In [184] Pentland and Liu develop a computational state-based model of driver behavior.

They model the driver's internal state as a four-state Hidden Markov Model (HMM). Once

the HMM has been trained the system is able to predict when the driver is about to brake

or turn. This knowledge may then be used by a smart vehicle to optimize its behavior for

the expected maneuver {in some sense, the situation awareness is shared over the vehicle-

driver system. In a similar way, Kuge et al. present a HMM method that characterizes and

detects lane changing maneuvers. The authors focus on information processing models of

human driver behavior generation and utilize them to adopt a model based approach in the

development of a lane change detection and recognition model. The primary components

are skilled low level maneuvers whose initiation is managed by higher level decision making

components. Perceptual models can be used to gain some insights into this area. Recent

research [182] shows that drivers' eye �xation patterns are strongly correlated with their

current mental state. Other more constrained but certainly important aspects of driver

behavior were estimated by few early methods, such as, for example, lane change intention

[160]. However, none of these methods was human model-based.

Pentland and Liu validated their model in an experiment conducted in a driving sim-

ulator. The objective of that validation test was to recognize di�erent driving maneuvers

at a tactical level, such as a right turn, a left turn or stopping. In order to apply such a

model to a driver assistance system, it is necessary to assess to what degree the HMM based

behavior recognition model also provides a plausible model for human behavior generation.

This knowledge may not only o�er better insight into selecting a particular HMM structure

but also provide better insight into potential limitations of the characterization in situations

that were not part of the training set used to �t the HMM parameters.

None of these previous systems, however, incorporates contextual information when

modeling driver behavior. Nonetheless, knowledge of the context is necessary to properly

make decisions in complex dynamic environments such as driving. Psychologists attribute

this competence to a task-speci�c understanding of the situation, termed situation aware-

ness. I this thesis I develop machine models of driver behavior that incorporate elements
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of situation awareness for tactical driving.

There is today strong research e�orts invested in developing partially or fully automated

driver assistance systems. For example, headway distance control or lane keeping control

systems, which make use of Intelligent Transportation System (ITS) technologies [66, 100].

To achieve such assistive systems, it is important to adopt approaches aimed at improving

the performance of the driver-vehicle-context cooperative system by regarding driving as

an interaction between the driver, the vehicle and the surrounding road information and

tra�c.

Finally, it has also been argued that laboratory research of SA should be conducted

under conditions that a�ord as much realistic behavior as possible. Due to the simplicity

of most car simulators, specially the lack of realism of the computer generated automated

cars, the experiments carried out in this thesis took place in a real car while driving in the

greater Boston area.

To summarize, the work of this thesis on driver behavior modeling extends Pentland

and Liu's framework [142, 184] in several ways: (1) I model a larger number of maneuvers

at a tactical lever {namely seven{; (2) I show that contextual information is critical for the

accurate recognition of some maneuvers; (3) I use real data collected in an instrumented

car, as opposed to using a car simulator.

5.5.4 Modeling Issues

From a computational viewpoint, much of the previous work done on intelligent vehicles

has been from the perspective of robotics {specially in the case of autonomous vehicles{.

Traditional approaches to robotics [68] structure the processing cycle in three stages. In

the �rst stage, sensors gather information about the world and convert it to a symbolic

internal representation, known as the world model. In the second stage, the world model

is processed by AI algorithms (typically involving planning and search) to �nd a course of

action for the robot to achieve its goals, known as a plan. In the �nal stage, this plan is

executed by the robot as a series of actions (actuator commands).

This process su�ers from several serious drawbacks. First, the approach implicitly under-

estimates the role played by perception [203]: due to sensing constraints and uncertainties

the world model is likely to be both incomplete and partially incorrect. Second, the process

assumes that it is possible to plan a complete path from the robot's initial state to the
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desired �nal state. This is infeasible (particularly in real-time) in most complex domains

due to an explosion in the number of searchable states, and the inability to perfectly predict

the outcomes of actions. Third, the chosen plan cannot be guaranteed to execute perfectly

{the robot may be forced to react immediately to unforeseen problems (very likely to take

place, given an incomplete world model). Consequently current mobile robot architectures

recognize that planning-heavy approaches to real-time problems in dynamic environments

{such as driving in tra�c{ are infeasible [209].

The information coming from the SmartCar's sensors is both noisy and incomplete.

Therefore one would need a modeling architecture that allows for incomplete, missing data.

Dynamic Graphical Models are suited for that task. In this thesis work, however, I have

not developed a sophisticated user interface that would let the SmartCar actively take the

appropriate actions, depending on the current situation. However the information needed

for building such an interface should be available from this thesis work. Therefore, even

though it is not the subject of this thesis to develop such an interface, the contributions

of this thesis will move forward towards more intelligent, personalized and pro-active user

interfaces in cars.

Modeling the world Information extracted by the perception modules is assimilated into

a representation of the world. As described in section 3.3, there are at least three di�erent

aspects relevant to tactical-level driving: (1) Smart car self-state, including physical and

mental components; (2) road state, including road geometry and exit information; (3) tra�c,

speeds, relative positions and hypothesized intentions.

� Physical State: Consists of information sensed from the speedometer, steering wheel

angle (rotary potentiometer), gear, brake pedal, and acceleration throttle. At the tac-

tical level, the important elements include: current speed, current steering curvature,

and current lateral displacement (distance from center of current lane).

� Mental State: In the experiments, eight di�erent driver behaviors at the tactical

level have been collected and modeled: overtake, change lane right/left, turn right/left,

start, stop and merge. Each of these actions is decomposed in a number of �nite

subactions that correspond to the hidden states of the HMMs.
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� Driver's Head Pose and Facial Expressions: The ELMO CCD camera mounted

on the steering wheel provides real-time information of the driver's head pose and facial

expressions. The driver's head pose, gaze and expressions convey information about

his mental, emotional and physical states. For example, recent research [182] shows

that drivers' eye �xation patterns are strongly correlated with their current mental

state. Sleep researchers say that driver drowsiness accounts for as many highway

accidents as drunkenness. Studies show that as many as one in 20 Americans have

fallen asleep at the wheel. Drowsiness accounts for 30 % of fatal crashes, one study

says equaling the number of fatal crashes blamed on alcohol intoxication. Sleepiness

slows reaction time, decreases awareness and impairs judgment, just like drugs or

alcohol. And just like alcohol and drugs, sleepiness can contribute to a collision.

It has been accessed that accidents caused by drowsy driver are extremely severe

because the vehicle collides with an object or other cars at full speed without the

application of the brake. Many of these accidents could potentially be avoided with a

warning sytem that would monitor the driver's eye movement patterns and head pose,

detecting anomalous behaviors. Similarly an analysis the driver's facial expressions

could detect dangerous extreme emotional states {such as anger{ and have the car

take some actions to correct them.

� Road State: Road state refers primarily to information about the road, such as the

lane positions or eventually on-board navigation systems (digital maps combined with

GPS). Aspects such as the limits of the road or the number of lanes constrain changing

maneuvers while speed limit signals and closed curves constrain speed choices. The

model should also have a record of eventual nearby exits or already known road

obstacles.

� Tra�c State: Modeling other vehicles is the most important aspect of tactical

driving. While current speeds and relative positions of the surrounding vehicles can

be ascertained in a relatively straightforward manner, their future behavior cannot.

Therefore the SmartCar is forced to make some hypotheses about the other vehicles'

intentions. Experienced human drivers can often predict the behavior of other drivers

with surprisingly accuracy [149]. However this involves both a large database of world

knowledge {equivalent to the driver's common sense and experience{ as well as more
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sophisticated perception than the state of the art in computer vision. All other previ-

ous systems that make the unrealistic assumption that vehicles will continue to drive

in their current lanes at their current velocities over some prediction time interval.

However in this thesis I propose a novel framework for modeling interactive behaviors

that could be utilized in a driving situation. Using this framework one could predict

the most likely actions that the car and surrounding tra�c would do next, assuming

a relatively simpli�ed world and 'normal' (average) drivers.

Note that the models proposed in this thesis do not incorporate higher level variables such

as driver's emotional state (frustration levels, tiredness, politeness, sleepiness).

5.5.5 SmartCar Experiments

To evaluate a system that models driving behaviors at a tactical level, quantitative measures

of performance are desired. A major emphasis on this part of the thesis work is how

context a�ects the driver's performance of a speci�c maneuver. To evaluate the model's

performance, I carried out a large driving experiment in a self-instrumented Volvo with

real tra�c. The measure of performance has been the recognition accuracy of the driving

maneuvers on labelled testing data. In the following, I will describe in detail the experiments

and results on driver maneuver recognition and prediction.

Apparatus

An instrumented automatic Volvo V70XC (1998) was used to measure driver behavior data.

The car sensors have been described in section 3.3, chapter 3.

Procedure

I carried out a set of experiments on the SmartCar platform in real tra�c situations over

a period of 2 months. The experiments took place on sessions of about 1:15 hours at four

di�erent times during the day (8 : 30am, 10 : 30am, 12 : 30pm, and 2 : 30pm). The task

consisted of driving a circuit in the extended Boston area. The designed driving circuit

includes both urban and highway sections. Figure 5-17 depicts the route followed in the

experiments.

Over 70 drivers participated in the experiment. The drivers were asked to sign a consent
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form (included in appendix 1) before starting the experiment. They were rewarded $20 for

participating.

A driving instructor was with the driver throughout the experiment. The instructor

set up the hardware and software for each of the experiments, gave directions to the driver

about where to go and labelled the driving maneuvers as they took place using the laptop

computer and the LabVIEW GUI, described in chapter 3, section 3.3. Because the focus was

on predicting what is the most likely maneuver to take place next, the driver was requested

to verbally report his/her next intended action before carrying it out. The four video

signals were recorded for the entire route. The car signals, however, were only recorded

when a maneuver was about to happen. A time window of 2 seconds was used, i.e. the car

signals were recorded starting 2 seconds before the driver reported his/her intentionality

to perform a maneuver. Both the video and car data was time stamped (the VCR and

the laptop clocks were synchronized before every session). The driving maneuvers that I

collected data for are: passing another car, turning right and left, changing lanes right and

left, starting, stopping and merging.

Figures 5-18 and 5-19 show typical car and context signals in one example of a 'passing'

and a 'turning' maneuvers collected in the experiments. Note how, in the case of passing,

the car signals contain little information about the maneuver type, whereas the gaze and

lane are much more relevant features.

After the driving task was completed, the drivers were asked to �ll in a questionnaire

with basic questions about their driving experience, skills and the experiment. A copy of

the questionnaire is included in appendix 1.

Data Post-processing

To train the driving behavior graphical models, signals from di�erent nature need to be

synchronized and combined in the same feature vector. During the driving experiments,

the laptop's and VCR clock's were synchronized to guarantee the temporal alignment of

the car and video signals.

The contextual information was acquired via the video signals. I have developed a video

processing graphical environment (GUI) that let's the user record, playback and annotate

the video signals coming from the front, rear and face driver cameras. Contextual infor-

mation {such as the driver's gaze, the relative position of the road lanes or the relative
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position, velocities and direction of the surrounding tra�c{ was manually annotated (us-

ing the video annotation GUI) for each frame and maneuver. Table 5.5 summarizes the

contextual information that was annotated.

Front and rear tra�c Driver's face Road lanes

Position Right/Left/Same Front/Rear-view mirror Right/Left
Right mirror/Left mirror

Right/Left
Relative Speed Slower/Same/Faster

Relative Distance Far/Medium/Close
Direction Same/Opposite

Representation Rectangle Rectangle line

Table 5.5: Information from the video annotation process

Due to the di�erent sampling rate on the car and video signals, the car data was sub-

sampled to match the video frame rate. The �nal sampling rate was of approximately 30

samples/s. All the continuous signals were low-pass �ltered using Butterworth �lters.

Driver Maneuver Recognition and Prediction

Using the car, driver's gaze and road lane data, HMMs for each of the maneuvers to be

recognized were built. The performance on recognition (accuracy) of the best HMMs trained

with di�erent feature vectors was evaluated:

1. Only car signal data: brake, steering wheel angle, gear, and acceleration throttle.

2. Car data and lane position information (front and back lane positions).

3. Car data and driver gaze information.

4. Car data, lane and driver information.

The gaze was a discrete signal with 6 possible values: (1) front road, (2) rear window

mirror, (3) right mirror, (4) left mirror, (5) right and (6) left.

In the case of the lanes, a single value was computed from the (x; y) image coordinates

of the extrema (�rst (x1; y1) and last (x2; y2) points) of the road lanes:

lanei = atan2(jy2 � y1j; jx2 � x1j) (5.2)

i 2 ffront left (
); front right (fr); back left (bl); back right (br)g (5.3)
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lanefeat =
lanefr + lanebr � (lanefl + lanebl)

4:0
(5.4)

The best models (best number of states and feature vector) were selected using 10-fold

cross-validation. The training data set was about 80% of the total amount of data. The

testing data set consisted of the rest of the data that had not been used for training.

The number of examples collected in the driving experiments is summarized in table

5.6. The \car data" refers to the car signals from all the in-car annotated maneuvers. The

\tra�c data" refers to the contextual information that was manually annotated on the

videos afterwards. Note that the number of \tra�c annotated" examples is much smaller

than the number of \car data" examples, because the former requires manual annotation

of the videos. The table contains also the average length of each maneuver in number of

samples and in seconds.

Number of driving examples Average Length #samples (s)

Car data Tra�c data Car data Tra�c data

Passing 710 40 517 (17.2 s) 341 (11.6 s)

turning right 257 37 258 (8.6 s) 159 (5.3 s)

turning left 260 31 258 (8.6 s) 158 (5.3 s)

changing lane right 663 81 159 (5.3 s) 106 (3.5 s)

changing lane left 711 87 165 (5.5 s) 115 (3.8 s)

starting 401 30 174 (5.8 s) 103 (3.4 s)

stopping 404 26 199 (6.6 s) 123 (4.1 s)

Table 5.6: Number of driving examples and average length per maneuver in number
of samples

The results on recognizing the previous driving maneuvers are depicted in table 5.7.

Some interesting conclusions to be drawn from the experimental results are:

1. There is a plateau of accuracy that can be reached using car information only. Cer-

tain maneuvers {such as passing and changing lanes left{ cannot be accurately dis-

tinguished using car information only.

2. The context is crucial for recognizing maneuvers such as turnings and lane changes.

3. As shown in [182] in a car simulator, the driver's gaze seems to be strongly correlated

with the driver's mental state in real life driving. It is, thus, a relevant feature for

driver maneuver prediction, specially in lane changes, passings and turnings.
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Accuracy (%)

Car Car Car
and Lane and Gaze

passing 100.0 100.0 100.0

turning right 71.4 85.7 85.7

turning left 0.0 33.3 66.7

changing lane right 0.0 12.5 6.3

changing lane left 29.4 17.6 23.5

starting 100.0 66.7 83.3

stopping 100.0 100.0 100.0

Table 5.7: Accuracy for HMMs car only, car and lane and car and gaze data

4. Predictive Power: The models are able to recognize the maneuver on average 1

second before any signi�cant (20% deviation) change in the car or contextual signals

takes place. Table 5.8 contains the average prediction power for each of the maneuvers,

and �gure 5-20 illustrates through an example what this predictive power means. It

depicts, frame by frame, the lane feature and the -log(likelihood) of the di�erent

models for a passing maneuver. There is no signi�cant change in the lane position

until frame 26. However, the models are able to recognize the passing from frame 4 on.

In consequence, our driver behavior models are able to anticipate that the passing is

going to take place about 2=3 seconds before any signi�cant, perceivable change takes

place. This is the so called predictive power.

Maneuver Average Predictive Power in Frames (seconds)

passing 37.7 (1.26 s)

stopping 70.7 (2.4 s)

changing lane left 2.1 (.1 s)

turning left 23.0 (.8 s)

changing lane right 20.3 (.7 s)

turning right 15.1 (.5 s)

starting 41.7 (1.4 s)

Table 5.8: Predictive power of the models in frames and secods

The predictive power of this modeling framework is crucial in an automotive application,

where there are tight time constraints. On average, the seven driving maneuvers can accu-

rately be recognized 1 second before any signi�cant change in the car signals takes place.
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I would claim that these kind of models are essential to build more realistic automated cars

in car simulators, to improve the human-machine interface in driver assistance systems, to

prevent potential dangerous situations and to create more realistic automated cars in car

simulators.

5.6 Summary

This chapter has described the experiments that I have carried out in four di�erent testbeds

to evaluate the recognition and prediction power of the human behavior models proposed

in this thesis, namely dynamic graphical models (HMMs and CHMMs). The testbeds were

intended to capture behaviors of increasing complexity. First, individual facial expressions in

LAFTER using HMMs; second, two-hand gestures in TaiChi using CHMMs; third, CHMMs

for recognizing pedestrian interactions; and �nally HMMs with contextual information for

driver maneuver recognition and prediction.

I have paid special attention on modeling interacive behaviors and on estimating how

contextual information a�ects the performance of the behaviors. The recognition accuracy

and prediction capability of the models has been reported. In the case of CHMMs, their

performance has been compared to that of HMMs. In particular, the superiority of CHMMs

versus HMMs for classifying interactive behaviors in two di�erent domains (Tai-Chi gesture

recognition and pedestrian interaction recognition) has been reported. In the pedestrian

surveillance application (see section 5.4), CHMMs surpass HMMs in identifying the case

in which there were no interactions present in the testing data. In a visual surveillance

system the false alarm rate is often as important as the classi�cation accuracy. In an ideal

automatic surveillance system, all the targeted behaviors should be detected with a close-

to-zero false alarm rate, so that one could reasonably alert a human operator to examine

them further. The reported ROC curves for both HMMs and CHMMs (see �gure 5-16)

illustrate that it is quite possible to achieve with CHMMs very low false alarm rates while

still maintaining good classi�cation accuracy.

Section 5.4.3 describes and experimentally validates the proposed framework for design-

ing prior models via synthetic data generated by agents. One of the main motivations for

constructing such synthetic agents is the ability to generate synthetic data which allows

to determine which Markov model architecture will be best for recognizing a new behavior
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(since it is di�cult to collect real examples of rare behaviors). By designing the synthetic

agents models such that they have the best generalization and invariance properties pos-

sible, one can obtain 
exible prior models that are transferable to real human behaviors

with little or no need of additional training. The use of synthetic agents to generate robust

behavior models from very few real behavior examples is of special importance in a visual

surveillance task, where typically the behaviors of greatest interest are also the most rare.

Finally, in the driving domain (see section 5.5.5) HMMs have been used for the recogni-

tion and prediction of maneuvers at a tactical level. Context {via the driver's gaze and the

relative position of the road lanes{ has been shown to be critical for the accurate recogni-

tion of certain maneuvers, such as lane changes. Another powerful feature of the proposed

models is their predictive power: on average, each of the seven driving maneuvers can accu-

rately be recognized 1 second before any signi�cant change in the car signals takes place.

I believe that these models would be essential to build more realistic automated cars in

car simulators, to improve the human-machine interface in driver assistance systems, to

prevent potential dangerous situations and to create more realistic automated cars in car

simulators.
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Figure 5-17: Route followed in the driving experiments: overview and city sections
detail
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Figure 5-18: Typical car signals for passing and turning left maneuvers
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Chapter 6

Contributions and Future Work

6.1 Contributions

In this thesis I have proposed a computational framework for the automatic recognition and

prediction of di�erent kinds of human behaviors from video cameras and other sensors, via

perceptually intelligent systems that automatically sense and correctly classify real human

behaviors, by means of Machine Perception and Machine Learning techniques. The pro-

posed framework could be psychologically plausible at a general level, addresses many of the

criticisms that current behavior theories su�er from and has been tested with experimental

data of increasing behavioral complexity collected in four di�erent domains:

1. Individual, isolated behaviors in the LAFTER [171] (Lips and Face TrackER) system:

a real-time system for face detection, tracking and facial expression recognition (see

�gure 1-1)

2. Body gestures in a Tai-Chi real-time gesture recognition system

3. Human to human interactive behaviors in a visual surveillance system for detection

and recognition of human-to-human interactions [173] (see �gure 1-1)

4. Human behaviors when mediated by a machine (car) in the SmartCar testbed. More

speci�cally models for recognizing driver's behaviors at a tactical level, with emphasis

on how the context (road lanes, surrounding tra�c) a�ects the driver's performance

(see �gure 1-2) and on the predictive power of the models.
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Figure 6-1: Proposed computational model for human behavior recognition and
prediction

The proposed model's architecture (depicted in �gure 6-1) is composed of a hierarchy

of two layers. At the bottom (�rst layer) there is the Perceptual System, composed of

cameras and other sensors. The signals captured by the sensors are typically the input

to a Kalman Filter. Depending on the domain, di�erent perceptual input modalities have

been used: (1) In the case of facial expression recognition, an active camera looking at the

user's face; (2) a stereo real-time head and hands tracking system is used in the Tai-Chi

gesture recognition system; (3) in the framework of pedestrian interactions recognition, a

static camera with wide �eld-of-view watching a dynamic outdoor scene; (4) �nally, in the

driver domain, multiple sensors of di�erent nature are used: internal sensors of the car's

internal state {acceleration, steering wheel angle, gear, speed and break pedal action{, and

cameras for the visual context {front and rear tra�c, driver's face and gaze, and driver's

viewpoint. Some key elements of the computer vision algorithms developed in this thesis are:

statistical (ML and MAP) appearance based segmentation of the objects of interest (face,

mouth, hands and full body) using blobs, characterized by a mixture of Gaussians, o�-line

and on-line EM algorithms for adaptation to di�erent users or changes in the environment,

active camera control via a PD-controller, and pedestrian detection and tracking by means
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of a novel eigenbackground subtraction technique.

At the top (second layer) there is the behavior models via Dynamic Graphical Models:

HMMs and CHMMs. To recognize human interactive behaviors two Hidden Markov Mod-

els (HMMs) are coupled in a new architecture called CHMMs to capture the interactions

between them. The algorithms for learning the parameters from data as well as for doing

inference with those models have been developed and described. The Kalman �lter estima-

tions are the observations of the Dynamic Graphical Models (HMMs or CHMMs) at the

second layer.

As it is depicted in �gure 6-1, the proposed architecture includes a bottom-up stream

of information provided by the various sensors, and a top-down information 
ow through

the predictions provided by the behavior models. Consequently a Bayesian approach {such

as the one followed{ o�ers a mathematical framework for both combining the observations

(bottom-up) with complex behavioral priors (top-down) to provide expectations that would

be fed back to the perceptual system.

The four testbeds that I have built in this thesis capture human behaviors of di�erent

nature and increasing complexity: �rst, isolated, single-user facial expressions (LAFTER);

second, 2-hand gestures (Tai-Chi); third, pedestrian interactions in a surveillance appli-

cation (pedestrian surveillance), and �nally potentially multi-agent interacting behaviors

where human performance is mediated by a machine, more speci�cally, a car (SmartCar).

In the SmartCar testbed, contextual information (road lanes position, driver's gaze and

eventually surrounding tra�c) has been shown to be critical towards accurate recognition

of driver maneuvers at a tactical level. Moreover, the models are able to predict the ma-

neuvers on average 1 second before they take place. This predictive power is extremely

important in a driving situation, where timeliness is critical.

The metric that I have used for quantifying the quality of the behavior models has been

their accuracy: how well they are able to recognize the behaviors on testing data. Statistical

machine learning usually su�ers from lack of data for estimating all the parameters in the

models. To alleviate this problem, a new framework for generating prior models has been

proposed. In essence, synthetically generated data are used to bootstrap the models creating

'prior models' that are further trained using much less real data than otherwise it would be

required. The Bayesian nature of the approach let us do so.
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The predictive power of these models lets us categorize human actions very soon after

the beginning of the action. Because of the generic nature of the typical behaviors of each of

the implemented systems there is a reason to believe that this approach to modeling human

behavior would generalize to other dynamic human-machine systems. This would allow us

to recognize automatically people's intended action, and thus build control systems that

dynamically adapt to suit the human's purposes better.

The main contributions of this thesis are consequence of the modeling approach proposed

in my work on Perceptual Intelligence. Namely, the combination of Perceptual Computing

with Statistical Machine Learning (dynamic graphical models or DynPINs) for recogniz-

ing human behaviors of increasing complexity in di�erent domains. More speci�cally the

proposed framework emphasizes the interactions between the agents and the importance

of contextual information as an important element of behavior modeling. The domains

explored in this thesis proceed along the "intentionality" axis (see the taxonomy described

in chapter 1), with increasing complexity in the nature of their typical behaviors. Beyond

the computational framework, some of the more speci�c key contributions are:

1. Real-time face expression recognition system using HMMs.

2. CHMMs for recognition of human-to-human interacting behaviors.

3. Flexible and interpretable prior behavior models by means of synthetic agents.

4. Dynamic Graphical Models architecture for the recognition and prediction of real

driver behaviors at a tactical level.

5. SmartCar data acquisition and playback platform.

6.2 Future Work

Short Term In a short term future I am interested in understanding better the so valuable

driver behavior database that I have created. I would like to build more sophisticated models

of driver behavior, more speci�cally by modeling the interactions between the driver and

the surrounding tra�c.

In theory, one could think of a model where each car is represented by a separate

HMM. Moreover, the HMMs do not evolve over time independently, but they are a�ected
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by adjacent cars in a pairwise fashion. Figure 6-2 illustrates the proposed architecture: a

lattice of CHMMs or LCHMM. Each HMM contains as observed nodes the corresponding

sensory inputs {such as velocity, acceleration or relative position{ and as hidden nodes the

driver's mental states (intentions) {such as changing lane or slowing down{. Each HMM

computes the probability distributions of its outputs based on its latest observations, its

previous state estimate and the state estimate of the adjacent cars. It encodes the dynamics

of the driving behavior at a tactical level. Each hidden state of the HMM can be interpreted

as a sub-action whose temporal concatenation yields the entire tactical level action.

Pairwise Interactions 

modeled with CHMMs

CHMMs

Figure 6-2: Representation of the Hidden Markov Models lattice for modeling car
interactions

However, this original graphical architecture depicted in �gure 6-2 needs to be modi-

�ed to re
ect the real driving behavior exhibited and collected in the driving experiments

{described in section 5.5.5{: instead of a symmetric CHMM, it seems more reasonable an

asymmetric CHMM (aCHMM) architecture, where the surrounding tra�c a�ects the be-

havior of the driver, but not vice-versa. This is just an approximation to the more realistic

situation of mutual interactions. The main justi�cation of such an approximation comes

from the fact that in our SmartCar experiments, the driver did indeed modify his/her be-

havior depending on the surrounding tra�c, but not vice-versa. I will call this architecture

as Lattice of Asymmetric CHMMs or LaCHMM.

At a perceptual level, I would also like to incorporate automatic algorithms for the

detection and tracking of the surrounding cars and road lanes.
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aCHMMs

Pairwise Interactions 
modeled with asymmetric CHMMs

Figure 6-3: Representation of the asymmetric CHMMs lattice (LaCHMM) for mod-
eling car interactions

Behavior Fusion In the architecture presented in �gure 6-3, the main vehicle has at-

tached a number of CHMMs that capture the pairwise interactions with the adjacent cars.

At each instant of time, therefore, each of these CHMMs predicts an output. In conse-

quence, multiple outputs are associated with the vehicle. However, the �nal output should

be just one. I propose the use of Bayesian integration of the di�erent outputs into a single

one.

Long Term In a more distant future, I would like to build models of longer term behav-

iors, with higher order {not just �rst order{ causal relations. I would also be interested in

exploring hierarchical architectures, performing automatic identi�cation of novel behaviors,

learning the model structure from data, and exploring other domains where this framework

might be appropriate.

Finally, a very important issue that I have barely addressed in this thesis is the human

interaction aspects of Perceptually Intelligent Systems. Once we can build systems that

sense and recognize human behaviors, what are they going to do with such information?

How should the information be conveyed to the user? There is no single and simple answer

to these questions. They certainly open new avenues of research topics that I will de�nitely

would like to explore in the future.
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Appendix 1: Driving Experiments

Consent Form and Questionnaires

CONSENT FORM

You are being invited to participate in a research study. This form is designed to provide

you with information about this study. The Principal Investigator, any of the Associated

Investigators or representative will describe this study to you and answer any of your ques-

tions. Your participation in the following experiment is completely voluntary. You are free

to withdraw this consent at any time, for any reason, and to request that any data collected

be destroyed. If at any time you feel uncomfortable, or unsure that you wish your results to

be part of the experiment, you may discontinue your participation with no repercussions.

In this experiment you will be asked to perform a driving task, �ll out questionnaires,

and answer some questions about the driving task. An experimenter will be with you

throughout the experiment. During the driving task, the experimenter will be sitting on

the copilot seat. The questionnaire will be shown to you before you are asked to sign

this consent form. Please feel to talk to the experimenter if you have questions or feel

uncomfortable at any time.

The purpose of this study is to build models of driver behavior at a tactical level. The

focus is on the following maneuvers: passing, turning right/left, changing lanes right/left,

stopping/starting after a stop, and following another car. We will record the following

signals while driving: speed, brake, gear, acceleration throttle, steering wheel angle, front

and rear road and tra�c, and the driver's face. We will build statistical machine learning

models of the previously mentioned maneuvers from the gathered data. The ultimate goal is

to create an automatic system that will recognize the driver's maneuvers and predict which
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will be the most likely action to be taken next. One important implication of such a system

is safer driving by warning the user in potentially dangerous situations. For example, the

car may predict that the driver is likely to change lanes and may warn the driver of the

presence of a car in his/her blind-spot before trying to perform such a maneuver.

The driving task will take place in the greater Boston area. You will drive both in the

city and in di�erent highway sections. The car is an automatic 1998 Volvo V70 XC which

has been instrumented with several sensors and video cameras. None of them a�ects the

driving task in any sense. There are four cameras in the car: two Sony EVI-D30 cameras

with wide �eld-of-view to record the tra�c in front and behind the car; an ELMO CCD

camera recording the driver's face and another ELMO CCD camera mounted on a pair of

glasses to record the driver's viewpoint. There will be no audio processing involved in the

experiment.

Because of the serious nature of the driving task, all results of the experiment should

be considered secondary to safe driving practice. The risks associated with your participa-

tion in this experiment are the normal risks associated with a driving task in both urban

and highway situations. If at any time you feel that any of the hardware components are

distracting you from driving, please let the experimenter know immediately and the mon-

itoring will be discontinued. In an emergency situation, your sole consideration should be

safety. Do not be at all concerned if you move out of view of the camera or you realize that

any of the hardware components gets detached.

Any responses that are collected during the experiment will be kept completely con�-

dential. However, because of the video recordings and your name being requested in the

questionnaire, anonymity can not be totally assured. In consequence, we will remove any

part of the data that you may not wish us to use. You will not be asked any speci�c con-

�dential question. The records of the driving experience will be archived on tapes labeled

only with the subject ID. From this point forward, you will be referred to only as the ID

number which appears on the upper right corner of this packet and never by your name.

If you have any questions, at any point during the experiment, the experimenter will

gladly answer them.

In the unlikely event of physical injury resulting from participation in this research, I

understand that medical treatment will be available from the MIT Medical Department,

including �rst aid emergency treatment and follow-up care as needed, and that my insurance
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carrier may be billed for the cost of such treatment. However, no compensation can be

provided for medical care apart from the foregoing. I further understand that making

such medical treatment available; or providing it, does not imply that such injury is the

Investigator's fault. I also understand that by my participation in this study I am not

waiving any of my legal rights.

I understand that I may also contact the Chairman of the Committee on the Use of

Humans of Experimental Subjects, MIT 253-6787, if I feel I have been treated unfairly as

a subject.

I hereby give consent for the data collected from the experiments in which I have par-

ticipated to be used in research papers, presentations and demonstrations. Furthermore, if

I wish to keep any part of the experiment from being made public, the experimenters will

ful�ll such requests. I understand that after the study is complete, the video data will be

archived on CD-ROM so that our results may be recorded and veri�ed. The data will only

be used for the purposes of scienti�c research by researchers at the MIT Media Lab or their

collaborators.

I certify that I am a licensed driver and that I will obey the driving laws of the state

of Massachusetts during this task. The car will be insured by MIT's policy with Liberty

Mutual #AS2� 111� 060227.

I understand that I will be paid $10 per hour for my participation in the study, pro-rated

for early withdrawal. I understand that the driving task will take approximately two hours

to complete.

My participation in this driving experiment will be completed after the �rst session.

However and in a totally voluntary manner, I will have the opportunity of coming back to

other identical driving sessions at a later date.

Name:

Date:

Location:

Driving Experiment Subject Instructions

***Sorry, you cannot participate if you do not have a valid and current driver's license ****
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Here is an outline of the course of the experiment:

The experimenter will take you to the East Campus Parking Garage behind building

68. You will get into the driver's seat of the 1998 Volvo V70 XC. The experimenter will be

turning on the cameras and data acquisition hardware and computer system. One all the

equipment has been set up and it's properly working you will start the driving task.

Your driving experience should include most of the following events:

1. A period of stationary monitoring

2. Exiting the garage

3. A period of city driving in Cambridge toward Route 93 North

4. Access to Route 93 North on exit 31

5. A period of highway driving out to North of Cambridge

6. Access to Route 95 West on exit 37 of Route 93

7. A period of highway driving on Route 95 South-West

8. Access to the Concord Turnpike on exit 20 of Route 95

9. A period of highway driving back to Cambridge

10. Access to the Cambridge exit

11. A period of city driving back to MIT (Memorial Drive/Massachusetts Avenue)

12. Parking in the East Garage

When we get back, you will be asked to �ll out a questionnaire asking about your driving

experience today and your driving habits and history. The whole process should take about

2 hours. Drive safely and remember to buckle up!

Sample Driving Questionnaire

Subject Name:

Subject Number:
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Session Number:

Date:

Experimenter Name:

This questionnaire is designed to help us label the data and have more background

information about you. You will be asked to rate how your driving was today with respect

to a what you would consider a 'normal, neutral' driving day.

1. Background Questions

Age: Sex:

Height: Weight: lbs

Profession:

# hours worked/week:

How long have you had your driver's license? months

How often do you usually drive?

(a) Every day

(b) Few times a week

(c) Few times a month

(d) Few times a year

(e) Never drive

Do you own a car or have a car that use frequently?

YES NO OTHER (Explain)

If so, what kind of car is it?

Do you feel comfortable in general driving a di�erent car to the car that you normally
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drive?

Are there any recent events in your life that you feel may have a�ected your driving

experience today?

YES NO

If so, in which sense is your driving experience a�ected?

Rate yourself as a driver:

(a) Very experienced, good driver

(b) Moderate experience, fair driver

(c) Average driver

(d) Non-experience, under-average driver

(e) Bad driver

2. Today's Driving Experience

How would you rate today's driving experience compared to other days:

(a) More stressful than average

(b) Normal driving day

(c) Less stressful than average

Rate the following driving periods in terms of how 'neutral, average' your driving was

during them according to the following 5 point scale listed below:

(a) Very comfortable

(b) Comfortable
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(c) Normal driving day

(d) Uneasy

(e) Not comfortable at all

A. Stationary periods

B. City driving periods

C. Highway driving periods

D. Tolls (if applicable)

E. Merges and exits

Rate the following driving maneuvers in terms of how comfortable you felt performing

them according to the following 5 point scale:

(a) Very comfortable

(b) Comfortable

(c) Average, normal

(d) Uneasy

(e) Not comfortable at all

A. Passing another car

B. Turning right

C. Changing lane right

D. Turning left

E. Changing lane left

F. Stopping

G. Following another car

H. Starting after a stop

On a scale of 1 to 7 with 1 representing the closest and 7 the furthest away to a normal

driving day, please rate the 12 driving events.

(a) Period of stationary monitoring before driving
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(b) Exiting the garage

(c) Period of city driving

(d) Access to Route 93 North

(e) Highway driving on Route 93 North

(f) Access to Route 95 South-West

(g) Highway driving on Route 95 West

(h) Access to Concord Turnpike back to Cambridge

(i) Highway driving on the Concord Turnpike

(j) Access to Cambridge exit

(k) City driving back to MIT

(l) Parking in the garage

Please, feel free to add any additional comments such as any highlights on your driving

experience today that may be relevant and useful for the purpose of this study:

Thank you very much for participating in this experiment!! We hope that you enjoyed

it!!
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PD Controller

Active camera tracking
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patches
Learned

Multi-resolution and face skin patches learning

Multi-resolution mouth extraction, skin model learning. Head and mouth

tracking with rotations and facial hair

SmartCar (Volvo V70XC)
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(a) (b)

(c) (d)

SmartCar sensors: (a) Front and rear wide-�eld-of-view cameras (b) Steering

wheel sensor and driver's face camera (c) Driver's viewpoint camera
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Example of LabVIEW graphical user interface and diagram.
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(a)

(b)

Graphical User Interface for video signals annotation: (a) Input image (b)
Annotated image.
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(a) (b)

(c) (d)

(a) A DPIN structure GD. (b) The moral graph GM for GD, where the parents
of every node have been linked. (c) The triangulated graph GT where the

nodes have been linked to satisfy the running intersection property. (d) The
corresponding junction tree (JT).
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Posterior CHMMsPrior CHMMs

Synthetic Data Real Data

Training procedure when using synthetically generated priors
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Chapter 5
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Active Remote Camera

head motion

for detection of user’s face

Fixed Camera

controlled by user’s

User Exploring

PentiumPro

SGI Indy/

and Camera Control
for Image processing
Main Computer

the remote location

remote location
displaying the
Screen/Monitor

The virtual window: Local head positions are detected by the active tracking

camera and used to control a moving camera in the remote site. The e�ect is
that the image on the local monitor changes as if it were a window. The

second image illustrates the virtual window system in use.

Real time computer graphics animation
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Responsive Portrait typical interaction

Responsive Portrait system architecture
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Preferential coding: the �rst image is the JPEG 
at encoded image (File size

of 14.1Kb); the second is a very low resolution JPEG encoded image using 
at
coding (File size of 7.1Kb); the third one is a preferential coding encoded

image with high resolution JPEG for the eyes and mouth but very low
resolution JPEG coding for the face and background (File size of 7.1Kb).
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Hand tracking of three Tai-Chi gestures: selected frames overlaid with hand

blobs from vision. The bottom-most graph shows the evolution of the feature
vector over time
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1{17: single whip 18{34: brush knee 19{52: cobra
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normalized log likelihood. Only the CHMM attains the right discrimination

structure
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Example trajectories and feature vector for interaction 2, or approach, meet

and continue separately behavior.
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Route followed in the driving experiments: overview and city sections detail
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Change in 

Position

the Lane

Right Lane Change
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Lane Feature

-Log(Likelihood)

Significant 

Prediction of a passing maneuver about 2=3 seconds before any signi�cant lane

change takes place.
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